-
Notifications
You must be signed in to change notification settings - Fork 5.3k
/
Copy pathllm_car_review_context.py
114 lines (91 loc) · 2.94 KB
/
llm_car_review_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import json
import os
import chromadb
import openai
from chromadb.utils import embedding_functions
os.environ["TOKENIZERS_PARALLELISM"] = "false"
DATA_PATH = "data/archive/*"
CHROMA_PATH = "car_review_embeddings"
EMBEDDING_FUNC_NAME = "multi-qa-MiniLM-L6-cos-v1"
COLLECTION_NAME = "car_reviews"
with open("config.json", "r") as json_file:
config_data = json.load(json_file)
openai.api_key = config_data.get("openai-secret-key")
client = chromadb.PersistentClient(CHROMA_PATH)
embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=EMBEDDING_FUNC_NAME
)
collection = client.get_collection(
name=COLLECTION_NAME, embedding_function=embedding_func
)
context = """
You are a customer success employee at a large
car dealership. Use the following car reviews
to answer questions: {}
"""
question = """
What's the key to great customer satisfaction
based on detailed positive reviews?
"""
good_reviews = collection.query(
query_texts=[question],
n_results=10,
include=["documents"],
where={"Rating": {"$gte": 3}},
)
reviews_str = ",".join(good_reviews["documents"][0])
good_review_summaries = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": context.format(reviews_str)},
{"role": "user", "content": question},
],
temperature=0,
n=1,
)
reviews_str = ",".join(good_reviews["documents"][0])
print("Good reviews: ")
print(reviews_str)
print("###########################################")
good_review_summaries = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": context.format(reviews_str)},
{"role": "user", "content": question},
],
temperature=0,
n=1,
)
print("AI-Generated summary of good reviews: ")
print(good_review_summaries["choices"][0]["message"]["content"])
print("###########################################")
context = """
You are a customer success employee at a large car dealership.
Use the following car reivews to answer questions: {}
"""
question = """
Which of these poor reviews has the worst implications about
our dealership? Explain why.
"""
poor_reviews = collection.query(
query_texts=[question],
n_results=5,
include=["documents"],
where={"Rating": {"$lte": 3}},
)
reviews_str = ",".join(poor_reviews["documents"][0])
print("Worst reviews: ")
print(poor_reviews["documents"][0][0])
print("###########################################")
poor_review_analysis = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": context.format(reviews_str)},
{"role": "user", "content": question},
],
temperature=0,
n=1,
)
print("AI-Generated summary of the single worst review: ")
print(poor_review_analysis["choices"][0]["message"]["content"])
print("###########################################")