forked from pdollar/toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilterDog2d.m
55 lines (49 loc) · 1.47 KB
/
filterDog2d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function G = filterDog2d( r, var, order, show )
% Difference of Gaussian (Dog) Filter.
%
% Adapted from code by Serge Belongie. Takes a "Difference of Gaussian" -
% all centered on the same point but with different values for sigma. Also
% serves as an approximation to an Laplacian of Gaussian (LoG) filter (if
% order==1).
%
% USAGE
% G = filterDog2d( r, var, order, [show] )
%
% INPUTS
% r - Final filter will be 2*r+1 on each side
% var - variance of central Gaussian
% order - should be either 1-LoG or 2-difference of 3 Gaussians
% show - [0] figure to use for optional display
%
% OUTPUTS
% G - filter
%
% EXAMPLE
% G = filterDog2d( 40, 40, 1, 1 ); %order=1 (LoG)
% G = filterDog2d( 40, 40, 2, 3 ); %order=2
%
% See also FILTERDOOG, FILTERGAUSS
%
% Piotr's Computer Vision Matlab Toolbox Version 2.0
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
if( nargin<4 || isempty(show) ); show=0; end
% create filter
N = 2*r+1;
if (order==1)
Ga = filterGauss( [N N], [], .71*var );
Gb = filterGauss( [N N], [], 1.14*var );
a=1; b=-1; G = a*Ga + b*Gb;
elseif (order==2)
Ga = filterGauss( [N N], [], 0.62*var );
Gb = filterGauss( [N N], [], var );
Gc = filterGauss( [N N], [], 1.6*var );
a=-1; b=2; c=-1; G = a*Ga + b*Gb + c*Gc;
else
error('order must be 1 or 2');
end
% normalize
G=G-mean(G(:));
G=G/norm(G(:),1);
% display
if(show); filterVisualize( G, show, 'row' ); end