Skip to content

Latest commit

 

History

History
136 lines (98 loc) · 3.84 KB

11.container-with-most-water.md

File metadata and controls

136 lines (98 loc) · 3.84 KB

题目地址

https://leetcode.com/problems/container-with-most-water/description/

题目描述

Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container and n is at least 2.

11.container-with-most-water-question


The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.



Example:

Input: [1,8,6,2,5,4,8,3,7]
Output: 49

前置知识

  • 双指针

思路

符合直觉的解法是,我们可以对两两进行求解,计算可以承载的水量。 然后不断更新最大值,最后返回最大值即可。 这种解法,需要两层循环,时间复杂度是 O(n^2)

eg:

// 这个解法比较暴力,效率比较低
// 时间复杂度是O(n^2)
let max = 0;
for (let i = 0; i < height.length; i++) {
  for (let j = i + 1; j < height.length; j++) {
    const currentArea = Math.abs(i - j) * Math.min(height[i], height[j]);
    if (currentArea > max) {
      max = currentArea;
    }
  }
}
return max;

这种符合直觉的解法有点像冒泡排序, 大家可以稍微类比一下

那么有没有更加优的解法呢?我们来换个角度来思考这个问题,上述的解法是通过两两组合,这无疑是完备的, 那我门是否可以先计算长度为 n 的面积,然后计算长度为 n-1 的面积,... 计算长度为 1 的面积。 这样去不断更新最大值呢? 很显然这种解法也是完备的,但是似乎时间复杂度还是 O(n ^ 2), 不要着急。

考虑一下,如果我们计算 n-1 长度的面积的时候,是直接直接排除一半的结果的。

如图:

11.container-with-most-water

比如我们计算 n 面积的时候,假如左侧的线段高度比右侧的高度低,那么我们通过左移右指针来将长度缩短为 n-1 的做法是没有意义的, 因为新的形成的面积变成了(n-1) * heightOfLeft 这个面积一定比刚才的长度为n的面积nn * heightOfLeft 小

也就是说最大面积一定是当前的面积或者通过移动短的线段得到

关键点解析

  • 双指针优化时间复杂度

代码

  • 语言支持:JS,C++

JavaScript Code:

/**
 * @param {number[]} height
 * @return {number}
 */
var maxArea = function (height) {
  if (!height || height.length <= 1) return 0;

  let leftPos = 0;
  let rightPos = height.length - 1;
  let max = 0;
  while (leftPos < rightPos) {
    const currentArea =
      Math.abs(leftPos - rightPos) *
      Math.min(height[leftPos], height[rightPos]);
    if (currentArea > max) {
      max = currentArea;
    }
    // 更新小的
    if (height[leftPos] < height[rightPos]) {
      leftPos++;
    } else {
      // 如果相等就随便了
      rightPos--;
    }
  }

  return max;
};

C++ Code:

class Solution {
public:
    int maxArea(vector<int>& height) {
        auto ret = 0ul, leftPos = 0ul, rightPos = height.size() - 1;
        while( leftPos < rightPos)
        {
            ret = std::max(ret, std::min(height[leftPos], height[rightPos]) * (rightPos - leftPos));
            if (height[leftPos] < height[rightPos]) ++leftPos;
            else --rightPos;
        }
        return ret;
    }
};

复杂度分析

  • 时间复杂度:$O(N)$
  • 空间复杂度:$O(1)$

大家也可以关注我的公众号《脑洞前端》获取更多更新鲜的 LeetCode 题解