forked from kahst/BirdNET-Analyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegments.py
271 lines (209 loc) · 8.46 KB
/
segments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import argparse
import traceback
import numpy as np
from multiprocessing import Pool
import config as cfg
import audio
# Set numpy random seed
np.random.seed(cfg.RANDOM_SEED)
def clearErrorLog():
if os.path.isfile(cfg.ERROR_LOG_FILE):
os.remove(cfg.ERROR_LOG_FILE)
def writeErrorLog(msg):
with open(cfg.ERROR_LOG_FILE, 'a') as elog:
elog.write(str(msg) + '\n')
def detectRType(line):
if line.lower().startswith('selection'):
return 'table'
elif line.lower().startswith('filepath'):
return 'r'
elif line.lower().startswith('indir'):
return 'kaleidoscope'
elif line.lower().startswith('start (s)'):
return 'csv'
else:
return 'audacity'
def parseFolders(apath, rpath, allowed_filetypes={'audio': ['wav', 'flac', 'mp3', 'ogg', 'm4a'], 'results': ['txt', 'csv']}):
data = {}
# Get all audio files
for root, dirs, files in os.walk(apath):
for f in files:
if f.split('.')[-1].lower() in allowed_filetypes['audio']:
data[f.rsplit('.', 1)[0]] = {'audio': os.path.join(root, f), 'result': ''}
# Get all result files
for root, dirs, files in os.walk(rpath):
for f in files:
if f.split('.')[-1] in allowed_filetypes['results'] and f.find('.BirdNET.') != -1:
data[f.split('.BirdNET.')[0]]['result'] = os.path.join(root, f)
# Convert to list
flist = []
for f in data:
if len(data[f]['result']) > 0:
flist.append(data[f])
print('Found {} audio files with valid result file.'.format(len(flist)))
return flist
def parseFiles(flist, max_segments=100):
species_segments = {}
for f in flist:
# Paths
afile = f['audio']
rfile = f['result']
# Get all segments for result file
segments = findSegments(afile, rfile)
# Parse segments by species
for s in segments:
if s['species'] not in species_segments:
species_segments[s['species']] = []
species_segments[s['species']].append(s)
# Shuffle segments for each species and limit to max_segments
for s in species_segments:
np.random.shuffle(species_segments[s])
species_segments[s] = species_segments[s][:max_segments]
# Make dict of segments per audio file
segments = {}
seg_cnt = 0
for s in species_segments:
for seg in species_segments[s]:
if not seg['audio'] in segments:
segments[seg['audio']] = []
segments[seg['audio']].append(seg)
seg_cnt += 1
print('Found {} segments in {} audio files.'.format(seg_cnt, len(segments)))
# Convert to list
flist = []
for f in segments:
flist.append((f, segments[f]))
return flist
def findSegments(afile, rfile):
segments = []
# Open and parse result file
lines = []
with open(rfile, 'r', encoding='utf-8') as rf:
for line in rf.readlines():
lines.append(line.strip())
# Auto-detect result type
rtype = detectRType(lines[0])
# Get start and end times based on rtype
confidence = 0
for i in range(len(lines)):
if rtype == 'table' and i > 0:
d = lines[i].split('\t')
start = float(d[3])
end = float(d[4])
species = d[-2]
confidence = float(d[-1])
elif rtype == 'audacity':
d = lines[i].split('\t')
start = float(d[0])
end = float(d[1])
species = d[2].split(', ')[1]
confidence = float(d[-1])
elif rtype == 'r' and i > 0:
d = lines[i].split(',')
start = float(d[1])
end = float(d[2])
species = d[4]
confidence = float(d[5])
elif rtype == 'kaleidoscope' and i > 0:
d = lines[i].split(',')
start = float(d[3])
end = float(d[4]) + start
species = d[5]
confidence = float(d[7])
elif rtype == 'csv' and i > 0:
d = lines[i].split(',')
start = float(d[0])
end = float(d[1])
species = d[3]
confidence = float(d[4])
# Check if confidence is high enough
if confidence >= cfg.MIN_CONFIDENCE:
segments.append({'audio': afile, 'start': start, 'end': end, 'species': species, 'confidence': confidence})
return segments
def extractSegments(item):
# Paths and config
afile = item[0][0]
segments = item[0][1]
seg_length = item[1]
cfg.setConfig(item[2])
# Status
print('Extracting segments from {}'.format(afile))
try:
# Open audio file
sig, _ = audio.openAudioFile(afile, cfg.SAMPLE_RATE)
except Exception as ex:
print('Error: Cannot open audio file {}'.format(afile), flush=True)
writeErrorLog(ex)
return
# Extract segments
seg_cnt = 1
for seg in segments:
try:
# Get start and end times
start = int(seg['start'] * cfg.SAMPLE_RATE)
end = int(seg['end'] * cfg.SAMPLE_RATE)
offset = ((seg_length * cfg.SAMPLE_RATE) - (end - start)) // 2
start = max(0, start - offset)
end = min(len(sig), end + offset)
# Make sure segmengt is long enough
if end > start:
# Get segment raw audio from signal
seg_sig = sig[int(start):int(end)]
# Make output path
outpath = os.path.join(cfg.OUTPUT_PATH, seg['species'])
if not os.path.exists(outpath):
os.makedirs(outpath, exist_ok=True)
# Save segment
seg_name = '{:.3f}_{}_{}.wav'.format(seg['confidence'], seg_cnt, seg['audio'].split(os.sep)[-1].rsplit('.', 1)[0])
seg_path = os.path.join(outpath, seg_name)
audio.saveSignal(seg_sig, seg_path)
seg_cnt += 1
except:
# Print traceback
print(traceback.format_exc(), flush=True)
# Write error log
msg = 'Error: Cannot extract segments from {}.\n{}'.format(afile, traceback.format_exc())
print(msg, flush=True)
writeErrorLog(msg)
break
if __name__ == '__main__':
# Clear error log
#clearErrorLog()
# Parse arguments
parser = argparse.ArgumentParser(description='Extract segments from audio files based on BirdNET detections.')
parser.add_argument('--audio', default='example/', help='Path to folder containing audio files.')
parser.add_argument('--results', default='example/', help='Path to folder containing result files.')
parser.add_argument('--o', default='example/', help='Output folder path for extracted segments.')
parser.add_argument('--min_conf', type=float, default=0.1, help='Minimum confidence threshold. Values in [0.01, 0.99]. Defaults to 0.1.')
parser.add_argument('--max_segments', type=int, default=100, help='Number of randomly extracted segments per species.')
parser.add_argument('--seg_length', type=float, default=3.0, help='Length of extracted segments in seconds. Defaults to 3.0.')
parser.add_argument('--threads', type=int, default=4, help='Number of CPU threads.')
args = parser.parse_args()
# Parse audio and result folders
cfg.FILE_LIST = parseFolders(args.audio, args.results)
# Set output folder
cfg.OUTPUT_PATH = args.o
# Set number of threads
cfg.CPU_THREADS = int(args.threads)
# Set confidence threshold
cfg.MIN_CONFIDENCE = max(0.01, min(0.99, float(args.min_conf)))
# Parse file list and make list of segments
cfg.FILE_LIST = parseFiles(cfg.FILE_LIST, max(1, int(args.max_segments)))
# Add config items to each file list entry.
# We have to do this for Windows which does not
# support fork() and thus each process has to
# have its own config. USE LINUX!
flist = []
for entry in cfg.FILE_LIST:
flist.append((entry, max(cfg.SIG_LENGTH, float(args.seg_length)), cfg.getConfig()))
# Extract segments
if cfg.CPU_THREADS < 2:
for entry in flist:
extractSegments(entry)
else:
with Pool(cfg.CPU_THREADS) as p:
p.map(extractSegments, flist)
# A few examples to test
# python3 segments.py --audio example/ --results example/ --o example/segments/
# python3 segments.py --audio example/ --results example/ --o example/segments/ --seg_length 5.0 --min_conf 0.1 --max_segments 100 --threads 4