forked from PurpleI2P/i2pd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Identity.cpp
335 lines (298 loc) · 9.6 KB
/
Identity.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#include <time.h>
#include <stdio.h>
#include <cryptopp/sha.h>
#include <cryptopp/osrng.h>
#include <cryptopp/dh.h>
#include <cryptopp/dsa.h>
#include "base64.h"
#include "CryptoConst.h"
#include "RouterContext.h"
#include "Identity.h"
#include "I2PEndian.h"
namespace i2p
{
namespace data
{
Identity& Identity::operator=(const Keys& keys)
{
// copy public and signing keys together
memcpy (publicKey, keys.publicKey, sizeof (publicKey) + sizeof (signingKey));
memset (&certificate, 0, sizeof (certificate));
return *this;
}
bool Identity::FromBase64 (const std::string& s)
{
size_t count = Base64ToByteStream (s.c_str(), s.length(), publicKey, DEFAULT_IDENTITY_SIZE);
return count == DEFAULT_IDENTITY_SIZE;
}
size_t Identity::FromBuffer (const uint8_t * buf, size_t len)
{
memcpy (publicKey, buf, DEFAULT_IDENTITY_SIZE);
return DEFAULT_IDENTITY_SIZE;
}
IdentityEx::IdentityEx ():
m_Verifier (nullptr), m_ExtendedLen (0), m_ExtendedBuffer (nullptr)
{
}
IdentityEx::IdentityEx(const uint8_t * publicKey, const uint8_t * signingKey, SigningKeyType type)
{
memcpy (m_StandardIdentity.publicKey, publicKey, sizeof (m_StandardIdentity.publicKey));
if (type == SIGNING_KEY_TYPE_ECDSA_SHA256_P256)
{
memcpy (m_StandardIdentity.signingKey + 64, signingKey, 64);
m_StandardIdentity.certificate.type = CERTIFICATE_TYPE_KEY;
m_ExtendedLen = 4; // 4 bytes extra
m_StandardIdentity.certificate.length = htobe16 (4);
m_ExtendedBuffer = new uint8_t[m_ExtendedLen];
*(uint16_t *)m_ExtendedBuffer = htobe16 (SIGNING_KEY_TYPE_ECDSA_SHA256_P256);
*(uint16_t *)(m_ExtendedBuffer + 2) = htobe16 (CRYPTO_KEY_TYPE_ELGAMAL);
uint8_t buf[DEFAULT_IDENTITY_SIZE + 4];
ToBuffer (buf, DEFAULT_IDENTITY_SIZE + 4);
CryptoPP::SHA256().CalculateDigest(m_IdentHash, buf, GetFullLen ());
}
else // DSA-SHA1
{
memcpy (m_StandardIdentity.signingKey, signingKey, sizeof (m_StandardIdentity.signingKey));
memset (&m_StandardIdentity.certificate, 0, sizeof (m_StandardIdentity.certificate));
m_IdentHash = m_StandardIdentity.Hash ();
m_ExtendedLen = 0;
m_ExtendedBuffer = nullptr;
}
CreateVerifier ();
}
IdentityEx::IdentityEx (const uint8_t * buf, size_t len):
m_Verifier (nullptr), m_ExtendedLen (0), m_ExtendedBuffer (nullptr)
{
FromBuffer (buf, len);
}
IdentityEx::IdentityEx (const IdentityEx& other):
m_Verifier (nullptr), m_ExtendedBuffer (nullptr)
{
*this = other;
}
IdentityEx::~IdentityEx ()
{
delete m_Verifier;
delete[] m_ExtendedBuffer;
}
IdentityEx& IdentityEx::operator=(const IdentityEx& other)
{
memcpy (&m_StandardIdentity, &other.m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
m_IdentHash = other.m_IdentHash;
delete[] m_ExtendedBuffer;
m_ExtendedLen = other.m_ExtendedLen;
if (m_ExtendedLen > 0)
{
m_ExtendedBuffer = new uint8_t[m_ExtendedLen];
memcpy (m_ExtendedBuffer, other.m_ExtendedBuffer, m_ExtendedLen);
}
else
m_ExtendedBuffer = nullptr;
delete m_Verifier;
CreateVerifier ();
return *this;
}
IdentityEx& IdentityEx::operator=(const Identity& standard)
{
m_StandardIdentity = standard;
m_IdentHash = m_StandardIdentity.Hash ();
delete[] m_ExtendedBuffer;
m_ExtendedBuffer = nullptr;
m_ExtendedLen = 0;
delete m_Verifier;
CreateVerifier ();
return *this;
}
size_t IdentityEx::FromBuffer (const uint8_t * buf, size_t len)
{
memcpy (&m_StandardIdentity, buf, DEFAULT_IDENTITY_SIZE);
delete[] m_ExtendedBuffer;
if (m_StandardIdentity.certificate.length)
{
m_ExtendedLen = be16toh (m_StandardIdentity.certificate.length);
m_ExtendedBuffer = new uint8_t[m_ExtendedLen];
memcpy (m_ExtendedBuffer, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen);
}
else
{
m_ExtendedLen = 0;
m_ExtendedBuffer = nullptr;
}
CryptoPP::SHA256().CalculateDigest(m_IdentHash, buf, GetFullLen ());
delete m_Verifier;
CreateVerifier ();
return GetFullLen ();
}
size_t IdentityEx::ToBuffer (uint8_t * buf, size_t len) const
{
memcpy (buf, &m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
if (m_ExtendedLen > 0 && m_ExtendedBuffer)
memcpy (buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBuffer, m_ExtendedLen);
return GetFullLen ();
}
size_t IdentityEx::GetSigningPublicKeyLen () const
{
if (m_Verifier)
return m_Verifier->GetPublicKeyLen ();
return 128;
}
size_t IdentityEx::GetSignatureLen () const
{
if (m_Verifier)
return m_Verifier->GetSignatureLen ();
return 40;
}
bool IdentityEx::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
if (m_Verifier)
return m_Verifier->Verify (buf, len, signature);
return false;
}
SigningKeyType IdentityEx::GetSigningKeyType () const
{
if (m_StandardIdentity.certificate.type == CERTIFICATE_TYPE_KEY && m_ExtendedBuffer)
return be16toh (*(const uint16_t *)m_ExtendedBuffer); // signing key
return SIGNING_KEY_TYPE_DSA_SHA1;
}
void IdentityEx::CreateVerifier ()
{
auto keyType = GetSigningKeyType ();
switch (keyType)
{
case SIGNING_KEY_TYPE_DSA_SHA1:
m_Verifier = new i2p::crypto::DSAVerifier (m_StandardIdentity.signingKey);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
m_Verifier = new i2p::crypto::ECDSAP256Verifier (m_StandardIdentity.signingKey + 64);
break;
default:
LogPrint ("Signing key type ", (int)keyType, " is not supported");
}
}
IdentHash Identity::Hash() const
{
IdentHash hash;
CryptoPP::SHA256().CalculateDigest(hash, publicKey, DEFAULT_IDENTITY_SIZE);
return hash;
}
PrivateKeys& PrivateKeys::operator=(const Keys& keys)
{
m_Public = Identity (keys);
memcpy (m_PrivateKey, keys.privateKey, 256); // 256
memcpy (m_SigningPrivateKey, keys.signingPrivateKey, 20); // 20 - DSA
delete m_Signer;
CreateSigner ();
return *this;
}
PrivateKeys& PrivateKeys::operator=(const PrivateKeys& other)
{
m_Public = other.m_Public;
memcpy (m_PrivateKey, other.m_PrivateKey, 256); // 256
memcpy (m_SigningPrivateKey, other.m_SigningPrivateKey, 128); // 128
delete m_Signer;
CreateSigner ();
return *this;
}
size_t PrivateKeys::FromBuffer (const uint8_t * buf, size_t len)
{
size_t ret = m_Public.FromBuffer (buf, len);
memcpy (m_PrivateKey, buf + ret, 256); // private key always 256
ret += 256;
size_t signingPrivateKeySize = m_Public.GetSignatureLen ()/2; // 20 for DSA
memcpy (m_SigningPrivateKey, buf + ret, signingPrivateKeySize);
ret += signingPrivateKeySize;
delete m_Signer;
CreateSigner ();
return ret;
}
size_t PrivateKeys::ToBuffer (uint8_t * buf, size_t len) const
{
size_t ret = m_Public.ToBuffer (buf, len);
memcpy (buf + ret, m_PrivateKey, 256); // private key always 256
ret += 256;
size_t signingPrivateKeySize = m_Public.GetSignatureLen ()/2; // 20 for DSA
memcpy (buf + ret, m_SigningPrivateKey, signingPrivateKeySize);
ret += signingPrivateKeySize;
return ret;
}
void PrivateKeys::Sign (const uint8_t * buf, int len, uint8_t * signature) const
{
if (m_Signer)
m_Signer->Sign (i2p::context.GetRandomNumberGenerator (), buf, len, signature);
}
void PrivateKeys::CreateSigner ()
{
if (m_Public.GetSigningKeyType () == SIGNING_KEY_TYPE_ECDSA_SHA256_P256)
m_Signer = new i2p::crypto::ECDSAP256Signer (m_SigningPrivateKey);
else
m_Signer = new i2p::crypto::DSASigner (m_SigningPrivateKey);
}
PrivateKeys PrivateKeys::CreateRandomKeys (SigningKeyType type)
{
if (type == SIGNING_KEY_TYPE_ECDSA_SHA256_P256)
{
PrivateKeys keys;
auto& rnd = i2p::context.GetRandomNumberGenerator ();
// encryption
uint8_t publicKey[256];
CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg);
dh.GenerateKeyPair(rnd, keys.m_PrivateKey, publicKey);
// signature
uint8_t signingPublicKey[64];
i2p::crypto::CreateECDSAP256RandomKeys (rnd, keys.m_SigningPrivateKey, signingPublicKey);
keys.m_Public = IdentityEx (publicKey, signingPublicKey, SIGNING_KEY_TYPE_ECDSA_SHA256_P256);
keys.CreateSigner ();
return keys;
}
return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1
}
Keys CreateRandomKeys ()
{
Keys keys;
auto& rnd = i2p::context.GetRandomNumberGenerator ();
// encryption
CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg);
dh.GenerateKeyPair(rnd, keys.privateKey, keys.publicKey);
// signing
i2p::crypto::CreateDSARandomKeys (rnd, keys.signingPrivateKey, keys.signingKey);
return keys;
}
void CreateRandomDHKeysPair (DHKeysPair * keys)
{
if (!keys) return;
CryptoPP::AutoSeededRandomPool rnd;
CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg);
dh.GenerateKeyPair(rnd, keys->privateKey, keys->publicKey);
}
RoutingKey CreateRoutingKey (const IdentHash& ident)
{
uint8_t buf[41]; // ident + yyyymmdd
memcpy (buf, (const uint8_t *)ident, 32);
time_t t = time (nullptr);
struct tm tm;
// WARNING!!! check if it is correct
#ifdef _WIN32
gmtime_s(&tm, &t);
// òóò âîçâðàùàåòñÿ êàêîå-òî çíà÷åíèå sprintf'îì. ìîæåò ñòîèò åãî ïðîâåðÿòü?
// http://msdn.microsoft.com/en-us/library/ce3zzk1k.aspx
sprintf_s((char *)(buf + 32), 9, "%4i%2i%2i", tm.tm_year, tm.tm_mon, tm.tm_mday);
#else
gmtime_r(&t, &tm);
// òóò âîçâðàùàåòñÿ êàêîå-òî çíà÷åíèå sprintf'îì. ìîæåò ñòîèò åãî ïðîâåðÿòü?
sprintf((char *)(buf + 32), "%4i%2i%2i", tm.tm_year, tm.tm_mon, tm.tm_mday);
#endif
RoutingKey key;
CryptoPP::SHA256().CalculateDigest(key.hash, buf, 40);
return key;
}
XORMetric operator^(const RoutingKey& key1, const RoutingKey& key2)
{
XORMetric m;
m.metric_ll[0] = key1.hash_ll[0] ^ key2.hash_ll[0];
m.metric_ll[1] = key1.hash_ll[1] ^ key2.hash_ll[1];
m.metric_ll[2] = key1.hash_ll[2] ^ key2.hash_ll[2];
m.metric_ll[3] = key1.hash_ll[3] ^ key2.hash_ll[3];
return m;
}
}
}