forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenBuiltin.cpp
1030 lines (889 loc) · 40.4 KB
/
GenBuiltin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- GenBuiltin.cpp - IR Generation for calls to builtin functions ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for the assorted operations that
// are performed by builtin functions.
//
//===----------------------------------------------------------------------===//
#include "GenBuiltin.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/ADT/StringSwitch.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/Types.h"
#include "swift/SIL/SILModule.h"
#include "clang/AST/ASTContext.h"
#include "Explosion.h"
#include "GenCall.h"
#include "GenCast.h"
#include "GenIntegerLiteral.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
using namespace swift;
using namespace irgen;
static void emitCastBuiltin(IRGenFunction &IGF, SILType destType,
Explosion &result,
Explosion &args,
llvm::Instruction::CastOps opcode) {
llvm::Value *input = args.claimNext();
assert(args.empty() && "wrong operands to cast operation");
llvm::Type *destTy = IGF.IGM.getStorageType(destType);
llvm::Value *output = IGF.Builder.CreateCast(opcode, input, destTy);
result.add(output);
}
static void emitCastOrBitCastBuiltin(IRGenFunction &IGF,
SILType destType,
Explosion &result,
Explosion &args,
BuiltinValueKind BV) {
llvm::Value *input = args.claimNext();
assert(args.empty() && "wrong operands to cast operation");
llvm::Type *destTy = IGF.IGM.getStorageType(destType);
llvm::Value *output;
switch (BV) {
default: llvm_unreachable("Not a cast-or-bitcast operation");
case BuiltinValueKind::TruncOrBitCast:
output = IGF.Builder.CreateTruncOrBitCast(input, destTy); break;
case BuiltinValueKind::ZExtOrBitCast:
output = IGF.Builder.CreateZExtOrBitCast(input, destTy); break;
case BuiltinValueKind::SExtOrBitCast:
output = IGF.Builder.CreateSExtOrBitCast(input, destTy); break;
}
result.add(output);
}
static void emitCompareBuiltin(IRGenFunction &IGF, Explosion &result,
Explosion &args, llvm::CmpInst::Predicate pred) {
llvm::Value *lhs = args.claimNext();
llvm::Value *rhs = args.claimNext();
llvm::Value *v;
if (lhs->getType()->isFPOrFPVectorTy())
v = IGF.Builder.CreateFCmp(pred, lhs, rhs);
else
v = IGF.Builder.CreateICmp(pred, lhs, rhs);
result.add(v);
}
static void emitTypeTraitBuiltin(IRGenFunction &IGF,
Explosion &out,
Explosion &args,
SubstitutionMap substitutions,
TypeTraitResult (TypeBase::*trait)()) {
assert(substitutions.getReplacementTypes().size() == 1
&& "type trait should have gotten single type parameter");
args.claimNext();
// Lower away the trait to a tristate 0 = no, 1 = yes, 2 = maybe.
unsigned result;
switch ((substitutions.getReplacementTypes()[0].getPointer()->*trait)()) {
case TypeTraitResult::IsNot:
result = 0;
break;
case TypeTraitResult::Is:
result = 1;
break;
case TypeTraitResult::CanBe:
result = 2;
break;
}
out.add(llvm::ConstantInt::get(IGF.IGM.Int8Ty, result));
}
static std::pair<SILType, const TypeInfo &>
getLoweredTypeAndTypeInfo(IRGenModule &IGM, Type unloweredType) {
auto lowered = IGM.getLoweredType(unloweredType);
return {lowered, IGM.getTypeInfo(lowered)};
}
/// emitBuiltinCall - Emit a call to a builtin function.
void irgen::emitBuiltinCall(IRGenFunction &IGF, const BuiltinInfo &Builtin,
Identifier FnId, SILType resultType,
Explosion &args, Explosion &out,
SubstitutionMap substitutions) {
if (Builtin.ID == BuiltinValueKind::UnsafeGuaranteedEnd) {
// Just consume the incoming argument.
assert(args.size() == 1 && "Expecting one incoming argument");
(void)args.claimAll();
return;
}
if (Builtin.ID == BuiltinValueKind::UnsafeGuaranteed) {
// Just forward the incoming argument.
assert(args.size() == 1 && "Expecting one incoming argument");
out = std::move(args);
// This is a token.
out.add(llvm::ConstantInt::get(IGF.IGM.Int8Ty, 0));
return;
}
if (Builtin.ID == BuiltinValueKind::OnFastPath) {
// The onFastPath builtin has only an effect on SIL level, so we lower it
// to a no-op.
return;
}
// These builtins don't care about their argument:
if (Builtin.ID == BuiltinValueKind::Sizeof) {
(void)args.claimAll();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
out.add(valueTy.second.getSize(IGF, valueTy.first));
return;
}
if (Builtin.ID == BuiltinValueKind::Strideof) {
(void)args.claimAll();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
out.add(valueTy.second.getStride(IGF, valueTy.first));
return;
}
if (Builtin.ID == BuiltinValueKind::Alignof) {
(void)args.claimAll();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
// The alignof value is one greater than the alignment mask.
out.add(IGF.Builder.CreateAdd(
valueTy.second.getAlignmentMask(IGF, valueTy.first),
IGF.IGM.getSize(Size(1))));
return;
}
if (Builtin.ID == BuiltinValueKind::IsPOD) {
(void)args.claimAll();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
out.add(valueTy.second.getIsPOD(IGF, valueTy.first));
return;
}
if (Builtin.ID == BuiltinValueKind::IsBitwiseTakable) {
(void)args.claimAll();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
out.add(valueTy.second.getIsBitwiseTakable(IGF, valueTy.first));
return;
}
// addressof expects an lvalue argument.
if (Builtin.ID == BuiltinValueKind::AddressOf) {
llvm::Value *address = args.claimNext();
llvm::Value *value = IGF.Builder.CreateBitCast(address,
IGF.IGM.Int8PtrTy);
out.add(value);
return;
}
// Everything else cares about the (rvalue) argument.
// If this is an LLVM IR intrinsic, lower it to an intrinsic call.
const IntrinsicInfo &IInfo = IGF.getSILModule().getIntrinsicInfo(FnId);
llvm::Intrinsic::ID IID = IInfo.ID;
// Emit non-mergeable traps only.
if (IGF.Builder.isTrapIntrinsic(IID)) {
IGF.Builder.CreateNonMergeableTrap(IGF.IGM, StringRef());
return;
}
// Calls to the int_instrprof_increment intrinsic are emitted during SILGen.
// At that stage, the function name GV used by the profiling pass is hidden.
// Fix the intrinsic call here by pointing it to the correct GV.
if (IID == llvm::Intrinsic::instrprof_increment) {
// If we import profiling intrinsics from a swift module but profiling is
// not enabled, ignore the increment.
SILModule &SILMod = IGF.getSILModule();
const auto &Opts = SILMod.getOptions();
if (!Opts.GenerateProfile) {
(void)args.claimAll();
return;
}
// Extract the PGO function name.
auto *NameGEP = cast<llvm::User>(args.claimNext());
auto *NameGV = dyn_cast<llvm::GlobalVariable>(NameGEP->stripPointerCasts());
// TODO: The SIL optimizer may rewrite the name argument in a way that
// makes it impossible to lower. Until that issue is fixed, defensively
// refuse to lower ill-formed intrinsics (rdar://39146527).
if (!NameGV) {
(void)args.claimAll();
return;
}
auto *NameC = NameGV->getInitializer();
StringRef Name = cast<llvm::ConstantDataArray>(NameC)->getRawDataValues();
StringRef PGOFuncName = Name.rtrim(StringRef("\0", 1));
// Point the increment call to the right function name variable.
std::string PGOFuncNameVar = llvm::getPGOFuncNameVarName(
PGOFuncName, llvm::GlobalValue::LinkOnceAnyLinkage);
auto *FuncNamePtr = IGF.IGM.Module.getNamedGlobal(PGOFuncNameVar);
if (!FuncNamePtr)
FuncNamePtr = llvm::createPGOFuncNameVar(
*IGF.IGM.getModule(), llvm::GlobalValue::LinkOnceAnyLinkage,
PGOFuncName);
llvm::SmallVector<llvm::Value *, 2> Indices(2, NameGEP->getOperand(1));
NameGEP = llvm::ConstantExpr::getGetElementPtr(
((llvm::PointerType *)FuncNamePtr->getType())->getElementType(),
FuncNamePtr, makeArrayRef(Indices));
// Replace the placeholder value with the new GEP.
Explosion replacement;
replacement.add(NameGEP);
replacement.add(args.claimAll());
args = std::move(replacement);
if (Opts.EmitProfileCoverageMapping) {
// Update the associated coverage mapping: it's now safe to emit, because
// a symtab entry for this function is guaranteed (r://39146527).
auto &coverageMaps = SILMod.getCoverageMaps();
auto CovMapIt = coverageMaps.find(PGOFuncName);
if (CovMapIt != coverageMaps.end())
CovMapIt->second->setSymtabEntryGuaranteed();
}
}
if (IID != llvm::Intrinsic::not_intrinsic) {
SmallVector<llvm::Type*, 4> ArgTys;
for (auto T : IInfo.Types)
ArgTys.push_back(IGF.IGM.getStorageTypeForLowered(T->getCanonicalType()));
auto F = llvm::Intrinsic::getDeclaration(&IGF.IGM.Module,
(llvm::Intrinsic::ID)IID, ArgTys);
llvm::FunctionType *FT = F->getFunctionType();
SmallVector<llvm::Value*, 8> IRArgs;
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
IRArgs.push_back(args.claimNext());
llvm::Value *TheCall = IGF.Builder.CreateCall(F, IRArgs);
if (!TheCall->getType()->isVoidTy())
extractScalarResults(IGF, TheCall->getType(), TheCall, out);
return;
}
if (Builtin.ID == BuiltinValueKind::StringObjectOr) {
llvm::Value *lhs = args.claimNext();
llvm::Value *rhs = args.claimNext();
llvm::Value *v = IGF.Builder.CreateOr(lhs, rhs);
return out.add(v);
}
// TODO: A linear series of ifs is suboptimal.
#define BUILTIN_SIL_OPERATION(id, name, overload) \
if (Builtin.ID == BuiltinValueKind::id) \
llvm_unreachable(name " builtin should be lowered away by SILGen!");
#define BUILTIN_CAST_OPERATION(id, name, attrs) \
if (Builtin.ID == BuiltinValueKind::id) \
return emitCastBuiltin(IGF, resultType, out, args, \
llvm::Instruction::id);
#define BUILTIN_CAST_OR_BITCAST_OPERATION(id, name, attrs) \
if (Builtin.ID == BuiltinValueKind::id) \
return emitCastOrBitCastBuiltin(IGF, resultType, out, args, \
BuiltinValueKind::id);
#define BUILTIN_BINARY_OPERATION(id, name, attrs, overload) \
if (Builtin.ID == BuiltinValueKind::id) { \
llvm::Value *lhs = args.claimNext(); \
llvm::Value *rhs = args.claimNext(); \
llvm::Value *v = IGF.Builder.Create##id(lhs, rhs); \
return out.add(v); \
}
#define BUILTIN_RUNTIME_CALL(id, name, attrs) \
if (Builtin.ID == BuiltinValueKind::id) { \
auto *fn = cast<llvm::Function>(IGF.IGM.get##id##Fn()); \
llvm::CallInst *call = IGF.Builder.CreateCall(fn, args.claimNext()); \
call->setCallingConv(fn->getCallingConv()); \
call->setAttributes(fn->getAttributes()); \
return out.add(call); \
}
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, uncheckedID, attrs, overload) \
if (Builtin.ID == BuiltinValueKind::id) { \
SmallVector<llvm::Type*, 2> ArgTys; \
auto opType = Builtin.Types[0]->getCanonicalType(); \
ArgTys.push_back(IGF.IGM.getStorageTypeForLowered(opType)); \
auto F = llvm::Intrinsic::getDeclaration(&IGF.IGM.Module, \
getLLVMIntrinsicIDForBuiltinWithOverflow(Builtin.ID), ArgTys); \
SmallVector<llvm::Value*, 2> IRArgs; \
IRArgs.push_back(args.claimNext()); \
IRArgs.push_back(args.claimNext()); \
args.claimNext();\
llvm::Value *TheCall = IGF.Builder.CreateCall(F, IRArgs); \
extractScalarResults(IGF, TheCall->getType(), TheCall, out); \
return; \
}
// FIXME: We could generate the code to dynamically report the overflow if the
// third argument is true. Now, we just ignore it.
#define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \
if (Builtin.ID == BuiltinValueKind::id) \
return emitCompareBuiltin(IGF, out, args, llvm::CmpInst::id);
#define BUILTIN_TYPE_TRAIT_OPERATION(id, name) \
if (Builtin.ID == BuiltinValueKind::id) \
return emitTypeTraitBuiltin(IGF, out, args, substitutions, &TypeBase::name);
#define BUILTIN(ID, Name, Attrs) // Ignore the rest.
#include "swift/AST/Builtins.def"
if (Builtin.ID == BuiltinValueKind::GlobalStringTablePointer) {
// This builtin should be used only on strings constructed from a
// string literal. If we ever get to the point of executing this builtin
// at run time, it implies an incorrect use of the builtin and must result
// in a trap.
IGF.emitTrap("invalid use of globalStringTablePointer",
/*Unreachable=*/false);
auto returnValue = llvm::UndefValue::get(IGF.IGM.Int8PtrTy);
// Consume the arguments of the builtin.
(void)args.claimAll();
return out.add(returnValue);
}
if (Builtin.ID == BuiltinValueKind::WillThrow) {
// willThrow is emitted like a Swift function call with the error in
// the error return register. We also have to pass a fake context
// argument due to how swiftcc works in clang.
auto *fn = cast<llvm::Function>(IGF.IGM.getWillThrowFn());
auto error = args.claimNext();
auto errorBuffer = IGF.getErrorResultSlot(
SILType::getPrimitiveObjectType(IGF.IGM.Context.getErrorDecl()
->getDeclaredType()
->getCanonicalType()));
IGF.Builder.CreateStore(error, errorBuffer);
auto context = llvm::UndefValue::get(IGF.IGM.Int8PtrTy);
llvm::CallInst *call = IGF.Builder.CreateCall(fn,
{context, errorBuffer.getAddress()});
call->setCallingConv(IGF.IGM.SwiftCC);
call->addAttribute(llvm::AttributeList::FunctionIndex,
llvm::Attribute::NoUnwind);
call->addAttribute(llvm::AttributeList::FirstArgIndex + 1,
llvm::Attribute::ReadOnly);
auto attrs = call->getAttributes();
IGF.IGM.addSwiftSelfAttributes(attrs, 0);
IGF.IGM.addSwiftErrorAttributes(attrs, 1);
call->setAttributes(attrs);
IGF.Builder.CreateStore(llvm::ConstantPointerNull::get(IGF.IGM.ErrorPtrTy),
errorBuffer);
return out.add(call);
}
if (Builtin.ID == BuiltinValueKind::FNeg) {
llvm::Value *rhs = args.claimNext();
llvm::Value *lhs = llvm::ConstantFP::get(rhs->getType(), "-0.0");
llvm::Value *v = IGF.Builder.CreateFSub(lhs, rhs);
return out.add(v);
}
if (Builtin.ID == BuiltinValueKind::AssumeTrue) {
llvm::Value *v = args.claimNext();
if (v->getType() == IGF.IGM.Int1Ty) {
IGF.Builder.CreateIntrinsicCall(llvm::Intrinsic::ID::assume, v);
}
return;
}
if (Builtin.ID == BuiltinValueKind::AssumeNonNegative) {
llvm::Value *v = args.claimNext();
// Set a value range on the load instruction, which must be the argument of
// the builtin.
if (isa<llvm::LoadInst>(v) || isa<llvm::CallInst>(v)) {
// The load must be post-dominated by the builtin. Otherwise we would get
// a wrong assumption in the else-branch in this example:
// x = f()
// if condition {
// y = assumeNonNegative(x)
// } else {
// // x might be negative here!
// }
// For simplicity we just enforce that both the load and the builtin must
// be in the same block.
llvm::Instruction *I = static_cast<llvm::Instruction *>(v);
if (I->getParent() == IGF.Builder.GetInsertBlock()) {
llvm::LLVMContext &ctx = IGF.IGM.Module.getContext();
auto *intType = dyn_cast<llvm::IntegerType>(v->getType());
llvm::Metadata *rangeElems[] = {
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(intType, 0)),
llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(intType,
APInt::getSignedMaxValue(intType->getBitWidth())))
};
llvm::MDNode *range = llvm::MDNode::get(ctx, rangeElems);
I->setMetadata(llvm::LLVMContext::MD_range, range);
}
}
// Don't generate any code for the builtin.
return out.add(v);
}
if (Builtin.ID == BuiltinValueKind::AllocRaw) {
auto size = args.claimNext();
auto align = args.claimNext();
// Translate the alignment to a mask.
auto alignMask = IGF.Builder.CreateSub(align, IGF.IGM.getSize(Size(1)));
auto alloc = IGF.emitAllocRawCall(size, alignMask, "builtin-allocRaw");
out.add(alloc);
return;
}
if (Builtin.ID == BuiltinValueKind::DeallocRaw) {
auto pointer = args.claimNext();
auto size = args.claimNext();
auto align = args.claimNext();
// Translate the alignment to a mask.
auto alignMask = IGF.Builder.CreateSub(align, IGF.IGM.getSize(Size(1)));
IGF.emitDeallocRawCall(pointer, size, alignMask);
return;
}
if (Builtin.ID == BuiltinValueKind::Fence) {
SmallVector<Type, 4> Types;
StringRef BuiltinName =
getBuiltinBaseName(IGF.IGM.Context, FnId.str(), Types);
BuiltinName = BuiltinName.drop_front(strlen("fence_"));
// Decode the ordering argument, which is required.
auto underscore = BuiltinName.find('_');
auto ordering = decodeLLVMAtomicOrdering(BuiltinName.substr(0, underscore));
assert(ordering != llvm::AtomicOrdering::NotAtomic);
BuiltinName = BuiltinName.substr(underscore);
// Accept singlethread if present.
bool isSingleThread = BuiltinName.startswith("_singlethread");
if (isSingleThread)
BuiltinName = BuiltinName.drop_front(strlen("_singlethread"));
assert(BuiltinName.empty() && "Mismatch with sema");
IGF.Builder.CreateFence(ordering, isSingleThread
? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
return;
}
if (Builtin.ID == BuiltinValueKind::CmpXChg) {
SmallVector<Type, 4> Types;
StringRef BuiltinName =
getBuiltinBaseName(IGF.IGM.Context, FnId.str(), Types);
BuiltinName = BuiltinName.drop_front(strlen("cmpxchg_"));
// Decode the success- and failure-ordering arguments, which are required.
SmallVector<StringRef, 4> Parts;
BuiltinName.split(Parts, "_");
assert(Parts.size() >= 2 && "Mismatch with sema");
auto successOrdering = decodeLLVMAtomicOrdering(Parts[0]);
auto failureOrdering = decodeLLVMAtomicOrdering(Parts[1]);
assert(successOrdering != llvm::AtomicOrdering::NotAtomic);
assert(failureOrdering != llvm::AtomicOrdering::NotAtomic);
auto NextPart = Parts.begin() + 2;
// Accept weak, volatile, and singlethread if present.
bool isWeak = false, isVolatile = false, isSingleThread = false;
if (NextPart != Parts.end() && *NextPart == "weak") {
isWeak = true;
NextPart++;
}
if (NextPart != Parts.end() && *NextPart == "volatile") {
isVolatile = true;
NextPart++;
}
if (NextPart != Parts.end() && *NextPart == "singlethread") {
isSingleThread = true;
NextPart++;
}
assert(NextPart == Parts.end() && "Mismatch with sema");
auto pointer = args.claimNext();
auto cmp = args.claimNext();
auto newval = args.claimNext();
llvm::Type *origTy = cmp->getType();
if (origTy->isPointerTy()) {
cmp = IGF.Builder.CreatePtrToInt(cmp, IGF.IGM.IntPtrTy);
newval = IGF.Builder.CreatePtrToInt(newval, IGF.IGM.IntPtrTy);
}
pointer = IGF.Builder.CreateBitCast(pointer,
llvm::PointerType::getUnqual(cmp->getType()));
llvm::Value *value = IGF.Builder.CreateAtomicCmpXchg(
pointer, cmp, newval, successOrdering, failureOrdering,
isSingleThread ? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
cast<llvm::AtomicCmpXchgInst>(value)->setVolatile(isVolatile);
cast<llvm::AtomicCmpXchgInst>(value)->setWeak(isWeak);
auto valueLoaded = IGF.Builder.CreateExtractValue(value, {0});
auto loadSuccessful = IGF.Builder.CreateExtractValue(value, {1});
if (origTy->isPointerTy())
valueLoaded = IGF.Builder.CreateIntToPtr(valueLoaded, origTy);
out.add(valueLoaded);
out.add(loadSuccessful);
return;
}
if (Builtin.ID == BuiltinValueKind::AtomicRMW) {
using namespace llvm;
SmallVector<Type, 4> Types;
StringRef BuiltinName = getBuiltinBaseName(IGF.IGM.Context,
FnId.str(), Types);
BuiltinName = BuiltinName.drop_front(strlen("atomicrmw_"));
auto underscore = BuiltinName.find('_');
StringRef SubOp = BuiltinName.substr(0, underscore);
AtomicRMWInst::BinOp SubOpcode = StringSwitch<AtomicRMWInst::BinOp>(SubOp)
.Case("xchg", AtomicRMWInst::Xchg)
.Case("add", AtomicRMWInst::Add)
.Case("sub", AtomicRMWInst::Sub)
.Case("and", AtomicRMWInst::And)
.Case("nand", AtomicRMWInst::Nand)
.Case("or", AtomicRMWInst::Or)
.Case("xor", AtomicRMWInst::Xor)
.Case("max", AtomicRMWInst::Max)
.Case("min", AtomicRMWInst::Min)
.Case("umax", AtomicRMWInst::UMax)
.Case("umin", AtomicRMWInst::UMin);
BuiltinName = BuiltinName.drop_front(underscore+1);
// Decode the ordering argument, which is required.
underscore = BuiltinName.find('_');
auto ordering = decodeLLVMAtomicOrdering(BuiltinName.substr(0, underscore));
assert(ordering != llvm::AtomicOrdering::NotAtomic);
BuiltinName = BuiltinName.substr(underscore);
// Accept volatile and singlethread if present.
bool isVolatile = BuiltinName.startswith("_volatile");
if (isVolatile) BuiltinName = BuiltinName.drop_front(strlen("_volatile"));
bool isSingleThread = BuiltinName.startswith("_singlethread");
if (isSingleThread)
BuiltinName = BuiltinName.drop_front(strlen("_singlethread"));
assert(BuiltinName.empty() && "Mismatch with sema");
auto pointer = args.claimNext();
auto val = args.claimNext();
// Handle atomic ops on pointers by casting to intptr_t.
llvm::Type *origTy = val->getType();
if (origTy->isPointerTy())
val = IGF.Builder.CreatePtrToInt(val, IGF.IGM.IntPtrTy);
pointer = IGF.Builder.CreateBitCast(pointer,
llvm::PointerType::getUnqual(val->getType()));
llvm::Value *value = IGF.Builder.CreateAtomicRMW(
SubOpcode, pointer, val, ordering,
isSingleThread ? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
cast<AtomicRMWInst>(value)->setVolatile(isVolatile);
if (origTy->isPointerTy())
value = IGF.Builder.CreateIntToPtr(value, origTy);
out.add(value);
return;
}
if (Builtin.ID == BuiltinValueKind::AtomicLoad
|| Builtin.ID == BuiltinValueKind::AtomicStore) {
using namespace llvm;
SmallVector<Type, 4> Types;
StringRef BuiltinName = getBuiltinBaseName(IGF.IGM.Context,
FnId.str(), Types);
auto underscore = BuiltinName.find('_');
BuiltinName = BuiltinName.substr(underscore+1);
underscore = BuiltinName.find('_');
auto ordering = decodeLLVMAtomicOrdering(BuiltinName.substr(0, underscore));
assert(ordering != llvm::AtomicOrdering::NotAtomic);
BuiltinName = BuiltinName.substr(underscore);
// Accept volatile and singlethread if present.
bool isVolatile = BuiltinName.startswith("_volatile");
if (isVolatile) BuiltinName = BuiltinName.drop_front(strlen("_volatile"));
bool isSingleThread = BuiltinName.startswith("_singlethread");
if (isSingleThread)
BuiltinName = BuiltinName.drop_front(strlen("_singlethread"));
assert(BuiltinName.empty() && "Mismatch with sema");
auto pointer = args.claimNext();
auto &valueTI = IGF.getTypeInfoForUnlowered(Types[0]);
auto schema = valueTI.getSchema();
assert(schema.size() == 1 && "not a scalar type?!");
auto origValueTy = schema[0].getScalarType();
// If the type is floating-point, then we need to bitcast to integer.
auto valueTy = origValueTy;
if (valueTy->isFloatingPointTy()) {
valueTy = llvm::IntegerType::get(IGF.IGM.LLVMContext,
valueTy->getPrimitiveSizeInBits());
}
pointer = IGF.Builder.CreateBitCast(pointer, valueTy->getPointerTo());
if (Builtin.ID == BuiltinValueKind::AtomicLoad) {
auto load = IGF.Builder.CreateLoad(pointer,
valueTI.getBestKnownAlignment());
load->setAtomic(ordering, isSingleThread ? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
load->setVolatile(isVolatile);
llvm::Value *value = load;
if (valueTy != origValueTy)
value = IGF.Builder.CreateBitCast(value, origValueTy);
out.add(value);
return;
} else if (Builtin.ID == BuiltinValueKind::AtomicStore) {
llvm::Value *value = args.claimNext();
if (valueTy != origValueTy)
value = IGF.Builder.CreateBitCast(value, valueTy);
auto store = IGF.Builder.CreateStore(value, pointer,
valueTI.getBestKnownAlignment());
store->setAtomic(ordering, isSingleThread ? llvm::SyncScope::SingleThread
: llvm::SyncScope::System);
store->setVolatile(isVolatile);
return;
} else {
llvm_unreachable("out of sync with outer conditional");
}
}
if (Builtin.ID == BuiltinValueKind::ExtractElement) {
using namespace llvm;
auto vector = args.claimNext();
auto index = args.claimNext();
out.add(IGF.Builder.CreateExtractElement(vector, index));
return;
}
if (Builtin.ID == BuiltinValueKind::InsertElement) {
using namespace llvm;
auto vector = args.claimNext();
auto newValue = args.claimNext();
auto index = args.claimNext();
out.add(IGF.Builder.CreateInsertElement(vector, newValue, index));
return;
}
if (Builtin.ID == BuiltinValueKind::SToSCheckedTrunc ||
Builtin.ID == BuiltinValueKind::UToUCheckedTrunc ||
Builtin.ID == BuiltinValueKind::SToUCheckedTrunc) {
bool Signed = (Builtin.ID == BuiltinValueKind::SToSCheckedTrunc);
auto FromType = Builtin.Types[0]->getCanonicalType();
auto ToTy = cast<llvm::IntegerType>(
IGF.IGM.getStorageTypeForLowered(Builtin.Types[1]->getCanonicalType()));
// Handle the arbitrary-precision truncate specially.
if (isa<BuiltinIntegerLiteralType>(FromType)) {
emitIntegerLiteralCheckedTrunc(IGF, args, ToTy, Signed, out);
return;
}
auto FromTy =
IGF.IGM.getStorageTypeForLowered(FromType);
// Compute the result for SToSCheckedTrunc_IntFrom_IntTo(Arg):
// Res = trunc_IntTo(Arg)
// Ext = sext_IntFrom(Res)
// OverflowFlag = (Arg == Ext) ? 0 : 1
// return (resultVal, OverflowFlag)
//
// Compute the result for UToUCheckedTrunc_IntFrom_IntTo(Arg)
// and SToUCheckedTrunc_IntFrom_IntTo(Arg):
// Res = trunc_IntTo(Arg)
// Ext = zext_IntFrom(Res)
// OverflowFlag = (Arg == Ext) ? 0 : 1
// return (Res, OverflowFlag)
llvm::Value *Arg = args.claimNext();
llvm::Value *Res = IGF.Builder.CreateTrunc(Arg, ToTy);
llvm::Value *Ext = Signed ? IGF.Builder.CreateSExt(Res, FromTy) :
IGF.Builder.CreateZExt(Res, FromTy);
llvm::Value *OverflowCond = IGF.Builder.CreateICmpEQ(Arg, Ext);
llvm::Value *OverflowFlag = IGF.Builder.CreateSelect(OverflowCond,
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 0),
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 1));
// Return the tuple - the result + the overflow flag.
out.add(Res);
return out.add(OverflowFlag);
}
if (Builtin.ID == BuiltinValueKind::UToSCheckedTrunc) {
auto FromTy =
IGF.IGM.getStorageTypeForLowered(Builtin.Types[0]->getCanonicalType());
auto ToTy =
IGF.IGM.getStorageTypeForLowered(Builtin.Types[1]->getCanonicalType());
llvm::Type *ToMinusOneTy =
llvm::Type::getIntNTy(ToTy->getContext(), ToTy->getIntegerBitWidth() - 1);
// Compute the result for UToSCheckedTrunc_IntFrom_IntTo(Arg):
// Res = trunc_IntTo(Arg)
// Trunc = trunc_'IntTo-1bit'(Arg)
// Ext = zext_IntFrom(Trunc)
// OverflowFlag = (Arg == Ext) ? 0 : 1
// return (Res, OverflowFlag)
llvm::Value *Arg = args.claimNext();
llvm::Value *Res = IGF.Builder.CreateTrunc(Arg, ToTy);
llvm::Value *Trunc = IGF.Builder.CreateTrunc(Arg, ToMinusOneTy);
llvm::Value *Ext = IGF.Builder.CreateZExt(Trunc, FromTy);
llvm::Value *OverflowCond = IGF.Builder.CreateICmpEQ(Arg, Ext);
llvm::Value *OverflowFlag = IGF.Builder.CreateSelect(OverflowCond,
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 0),
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 1));
// Return the tuple: (the result, the overflow flag).
out.add(Res);
return out.add(OverflowFlag);
}
// We are currently emitting code for '_convertFromBuiltinIntegerLiteral',
// which will call the builtin and pass it a non-compile-time-const parameter.
if (Builtin.ID == BuiltinValueKind::IntToFPWithOverflow) {
assert(Builtin.Types[0]->is<BuiltinIntegerLiteralType>());
auto toType =
IGF.IGM.getStorageTypeForLowered(Builtin.Types[1]->getCanonicalType());
auto result = emitIntegerLiteralToFP(IGF, args, toType);
out.add(result);
return;
}
if (Builtin.ID == BuiltinValueKind::Once
|| Builtin.ID == BuiltinValueKind::OnceWithContext) {
// The input type is statically (Builtin.RawPointer, @convention(thin) () -> ()).
llvm::Value *PredPtr = args.claimNext();
// Cast the predicate to a OnceTy pointer.
PredPtr = IGF.Builder.CreateBitCast(PredPtr, IGF.IGM.OnceTy->getPointerTo());
llvm::Value *FnCode = args.claimNext();
// Get the context if any.
llvm::Value *Context;
if (Builtin.ID == BuiltinValueKind::OnceWithContext) {
Context = args.claimNext();
} else {
Context = llvm::UndefValue::get(IGF.IGM.Int8PtrTy);
}
// If we know the platform runtime's "done" value, emit the check inline.
llvm::BasicBlock *doneBB = nullptr;
llvm::BasicBlock *beforeBB = IGF.Builder.GetInsertBlock();
if (auto ExpectedPred = IGF.IGM.TargetInfo.OnceDonePredicateValue) {
auto PredValue = IGF.Builder.CreateLoad(PredPtr,
IGF.IGM.getPointerAlignment());
auto ExpectedPredValue = llvm::ConstantInt::getSigned(IGF.IGM.OnceTy,
*ExpectedPred);
auto PredIsDone = IGF.Builder.CreateICmpEQ(PredValue, ExpectedPredValue);
PredIsDone = IGF.Builder.CreateExpect(PredIsDone,
llvm::ConstantInt::get(IGF.IGM.Int1Ty, 1));
auto notDoneBB = IGF.createBasicBlock("once_not_done");
doneBB = IGF.createBasicBlock("once_done");
IGF.Builder.CreateCondBr(PredIsDone, doneBB, notDoneBB);
IGF.Builder.SetInsertPoint(&IGF.CurFn->back());
IGF.Builder.emitBlock(notDoneBB);
}
// Emit the runtime "once" call.
auto call
= IGF.Builder.CreateCall(IGF.IGM.getOnceFn(), {PredPtr, FnCode, Context});
call->setCallingConv(IGF.IGM.DefaultCC);
// If we emitted the "done" check inline, join the branches.
if (auto ExpectedPred = IGF.IGM.TargetInfo.OnceDonePredicateValue) {
IGF.Builder.CreateBr(doneBB);
IGF.Builder.SetInsertPoint(beforeBB);
IGF.Builder.emitBlock(doneBB);
// We can assume the once predicate is in the "done" state now.
auto PredValue = IGF.Builder.CreateLoad(PredPtr,
IGF.IGM.getPointerAlignment());
auto ExpectedPredValue = llvm::ConstantInt::getSigned(IGF.IGM.OnceTy,
*ExpectedPred);
auto PredIsDone = IGF.Builder.CreateICmpEQ(PredValue, ExpectedPredValue);
IGF.Builder.CreateAssumption(PredIsDone);
}
// No return value.
return;
}
if (Builtin.ID == BuiltinValueKind::AssertConf) {
// Replace the call to assert_configuration by the Debug configuration
// value.
// TODO: assert(IGF.IGM.getOptions().AssertConfig ==
// SILOptions::DisableReplacement);
// Make sure this only happens in a mode where we build a library dylib.
llvm::Value *DebugAssert = IGF.Builder.getInt32(SILOptions::Debug);
out.add(DebugAssert);
return;
}
if (Builtin.ID == BuiltinValueKind::DestroyArray) {
// The input type is (T.Type, Builtin.RawPointer, Builtin.Word).
/* metatype (which may be thin) */
if (args.size() == 3)
args.claimNext();
llvm::Value *ptr = args.claimNext();
llvm::Value *count = args.claimNext();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
ptr = IGF.Builder.CreateBitCast(ptr,
valueTy.second.getStorageType()->getPointerTo());
Address array = valueTy.second.getAddressForPointer(ptr);
valueTy.second.destroyArray(IGF, array, count, valueTy.first);
return;
}
if (Builtin.ID == BuiltinValueKind::CopyArray ||
Builtin.ID == BuiltinValueKind::TakeArrayNoAlias ||
Builtin.ID == BuiltinValueKind::TakeArrayFrontToBack ||
Builtin.ID == BuiltinValueKind::TakeArrayBackToFront ||
Builtin.ID == BuiltinValueKind::AssignCopyArrayNoAlias ||
Builtin.ID == BuiltinValueKind::AssignCopyArrayFrontToBack ||
Builtin.ID == BuiltinValueKind::AssignCopyArrayBackToFront ||
Builtin.ID == BuiltinValueKind::AssignTakeArray) {
// The input type is (T.Type, Builtin.RawPointer, Builtin.RawPointer, Builtin.Word).
/* metatype (which may be thin) */
if (args.size() == 4)
args.claimNext();
llvm::Value *dest = args.claimNext();
llvm::Value *src = args.claimNext();
llvm::Value *count = args.claimNext();
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
dest = IGF.Builder.CreateBitCast(dest,
valueTy.second.getStorageType()->getPointerTo());
src = IGF.Builder.CreateBitCast(src,
valueTy.second.getStorageType()->getPointerTo());
Address destArray = valueTy.second.getAddressForPointer(dest);
Address srcArray = valueTy.second.getAddressForPointer(src);
switch (Builtin.ID) {
case BuiltinValueKind::CopyArray:
valueTy.second.initializeArrayWithCopy(IGF, destArray, srcArray, count,
valueTy.first);
break;
case BuiltinValueKind::TakeArrayNoAlias:
valueTy.second.initializeArrayWithTakeNoAlias(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::TakeArrayFrontToBack:
valueTy.second.initializeArrayWithTakeFrontToBack(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::TakeArrayBackToFront:
valueTy.second.initializeArrayWithTakeBackToFront(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::AssignCopyArrayNoAlias:
valueTy.second.assignArrayWithCopyNoAlias(IGF, destArray, srcArray, count,
valueTy.first);
break;
case BuiltinValueKind::AssignCopyArrayFrontToBack:
valueTy.second.assignArrayWithCopyFrontToBack(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::AssignCopyArrayBackToFront:
valueTy.second.assignArrayWithCopyBackToFront(IGF, destArray, srcArray,
count, valueTy.first);
break;
case BuiltinValueKind::AssignTakeArray:
valueTy.second.assignArrayWithTake(IGF, destArray, srcArray, count,
valueTy.first);
break;
default:
llvm_unreachable("out of sync with if condition");
}
return;
}
if (Builtin.ID == BuiltinValueKind::CondUnreachable) {
// conditionallyUnreachable is a no-op by itself. Since it's noreturn, there
// should be a true unreachable terminator right after.
return;
}
if (Builtin.ID == BuiltinValueKind::ZeroInitializer) {
// Build a zero initializer of the result type.
auto valueTy = getLoweredTypeAndTypeInfo(IGF.IGM,
substitutions.getReplacementTypes()[0]);
auto schema = valueTy.second.getSchema();
for (auto &elt : schema) {
out.add(llvm::Constant::getNullValue(elt.getScalarType()));
}
return;
}
if (Builtin.ID == BuiltinValueKind::GetObjCTypeEncoding) {
(void)args.claimAll();
Type valueTy = substitutions.getReplacementTypes()[0];
// Get the type encoding for the associated clang type.
auto clangTy = IGF.IGM.getClangType(valueTy->getCanonicalType());
std::string encoding;
IGF.IGM.getClangASTContext().getObjCEncodingForType(clangTy, encoding);
auto globalString = IGF.IGM.getAddrOfGlobalString(encoding);
out.add(globalString);
return;
}
if (Builtin.ID == BuiltinValueKind::TSanInoutAccess) {
auto address = args.claimNext();
IGF.emitTSanInoutAccessCall(address);
return;
}
if (Builtin.ID == BuiltinValueKind::Swift3ImplicitObjCEntrypoint) {
llvm::Value *entrypointArgs[7];
auto argIter = IGF.CurFn->arg_begin();
// self
entrypointArgs[0] = &*argIter++;
if (entrypointArgs[0]->getType() != IGF.IGM.ObjCPtrTy)
entrypointArgs[0] = IGF.Builder.CreateBitCast(entrypointArgs[0], IGF.IGM.ObjCPtrTy);
// _cmd
entrypointArgs[1] = &*argIter;
if (entrypointArgs[1]->getType() != IGF.IGM.ObjCSELTy)
entrypointArgs[1] = IGF.Builder.CreateBitCast(entrypointArgs[1], IGF.IGM.ObjCSELTy);
// Filename pointer
entrypointArgs[2] = args.claimNext();
// Filename length
entrypointArgs[3] = args.claimNext();
// Line
entrypointArgs[4] = args.claimNext();
// Column
entrypointArgs[5] = args.claimNext();