forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenFunc.cpp
1719 lines (1511 loc) · 68.6 KB
/
GenFunc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- GenFunc.cpp - Swift IR Generation for Function Types -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for function types in Swift. This
// includes creating the IR type as well as capturing variables and
// performing calls.
//
// Swift supports three representations of functions:
//
// - thin, which are just a function pointer;
//
// - thick, which are a pair of a function pointer and
// an optional ref-counted opaque context pointer; and
//
// - block, which match the Apple blocks extension: a ref-counted
// pointer to a mostly-opaque structure with the function pointer
// stored at a fixed offset.
//
// The order of function parameters is as follows:
//
// - indirect return pointer
// - block context parameter, if applicable
// - expanded formal parameter types
// - implicit generic parameters
// - thick context parameter, if applicable
// - error result out-parameter, if applicable
// - witness_method generic parameters, if applicable
//
// The context and error parameters are last because they are
// optional: we'd like to be able to turn a thin function into a
// thick function, or a non-throwing function into a throwing one,
// without adding a thunk. A thick context parameter is required
// (but can be passed undef) if an error result is required.
//
// The additional generic parameters for witness methods follow the
// same logic: we'd like to be able to use non-generic method
// implementations directly as protocol witnesses if the rest of the
// ABI matches up.
//
// Note that some of this business with context parameters and error
// results is just IR formalism; on most of our targets, both of
// these are passed in registers. This is also why passing them
// as the final argument isn't bad for performance.
//
// For now, function pointer types are always stored as opaque
// pointers in LLVM IR; using a well-typed function type is
// very challenging because of issues with recursive type expansion,
// which can potentially introduce infinite types. For example:
// struct A {
// var fn: (A) -> ()
// }
// Our CC lowering expands the fields of A into the argument list
// of A.fn, which is necessarily infinite. Attempting to use better
// types when not in a situation like this would just make the
// compiler complacent, leading to a long tail of undiscovered
// crashes. So instead we always store as i8* and require the
// bitcast whenever we change representations.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/Decl.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Module.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Types.h"
#include "swift/IRGen/Linking.h"
#include "clang/AST/ASTContext.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/StringSwitch.h"
#include "BitPatternBuilder.h"
#include "Callee.h"
#include "ConstantBuilder.h"
#include "EnumPayload.h"
#include "Explosion.h"
#include "FixedTypeInfo.h"
#include "GenCall.h"
#include "GenClass.h"
#include "GenFunc.h"
#include "GenHeap.h"
#include "GenMeta.h"
#include "GenObjC.h"
#include "GenPoly.h"
#include "GenProto.h"
#include "GenType.h"
#include "HeapTypeInfo.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "IndirectTypeInfo.h"
#include "ScalarPairTypeInfo.h"
#include "Signature.h"
#include "IRGenMangler.h"
using namespace swift;
using namespace irgen;
namespace {
/// Information about the IR-level signature of a function type.
class FuncSignatureInfo {
private:
/// The SIL function type being represented.
const CanSILFunctionType FormalType;
mutable Signature TheSignature;
public:
FuncSignatureInfo(CanSILFunctionType formalType)
: FormalType(formalType) {}
Signature getSignature(IRGenModule &IGM) const;
};
/// The @thin function type-info class.
class ThinFuncTypeInfo : public PODSingleScalarTypeInfo<ThinFuncTypeInfo,
LoadableTypeInfo>,
public FuncSignatureInfo {
ThinFuncTypeInfo(CanSILFunctionType formalType, llvm::Type *storageType,
Size size, Alignment align,
const SpareBitVector &spareBits)
: PODSingleScalarTypeInfo(storageType, size, spareBits, align),
FuncSignatureInfo(formalType)
{
}
public:
static const ThinFuncTypeInfo *create(CanSILFunctionType formalType,
llvm::Type *storageType,
Size size, Alignment align,
const SpareBitVector &spareBits) {
return new ThinFuncTypeInfo(formalType, storageType, size, align,
spareBits);
}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return getFunctionPointerExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return getFunctionPointerFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T, bool isOutlined)
const override {
return getFunctionPointerExtraInhabitantIndex(IGF, src);
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T, bool isOutlined)
const override {
return storeFunctionPointerExtraInhabitant(IGF, index, dest);
}
};
/// The @thick function type-info class.
class FuncTypeInfo :
public ScalarPairTypeInfo<FuncTypeInfo, ReferenceTypeInfo>,
public FuncSignatureInfo {
FuncTypeInfo(CanSILFunctionType formalType, llvm::StructType *storageType,
Size size, Alignment align, SpareBitVector &&spareBits,
IsPOD_t pod)
: ScalarPairTypeInfo(storageType, size, std::move(spareBits), align, pod),
FuncSignatureInfo(formalType)
{
}
public:
static const FuncTypeInfo *create(CanSILFunctionType formalType,
llvm::StructType *storageType,
Size size, Alignment align,
SpareBitVector &&spareBits,
IsPOD_t pod) {
return new FuncTypeInfo(formalType, storageType, size, align,
std::move(spareBits), pod);
}
// Function types do not satisfy allowsOwnership.
#define REF_STORAGE(Name, name, ...) \
const TypeInfo * \
create##Name##StorageType(TypeConverter &TC, \
bool isOptional) const override { \
llvm_unreachable("[" #name "] function type"); \
}
#include "swift/AST/ReferenceStorage.def"
static Size getFirstElementSize(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static StringRef getFirstElementLabel() {
return ".fn";
}
static bool isFirstElementTrivial() {
return true;
}
void emitRetainFirstElement(IRGenFunction &IGF, llvm::Value *fn,
Optional<Atomicity> atomicity = None) const {}
void emitReleaseFirstElement(IRGenFunction &IGF, llvm::Value *fn,
Optional<Atomicity> atomicity = None) const {}
void emitAssignFirstElement(IRGenFunction &IGF, llvm::Value *fn,
Address fnAddr) const {
IGF.Builder.CreateStore(fn, fnAddr);
}
static Size getSecondElementOffset(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static Size getSecondElementSize(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static StringRef getSecondElementLabel() {
return ".data";
}
bool isSecondElementTrivial() const {
return isPOD(ResilienceExpansion::Maximal);
}
void emitRetainSecondElement(IRGenFunction &IGF, llvm::Value *data,
Optional<Atomicity> atomicity = None) const {
if (!isPOD(ResilienceExpansion::Maximal)) {
if (!atomicity) atomicity = IGF.getDefaultAtomicity();
IGF.emitNativeStrongRetain(data, *atomicity);
}
}
void emitReleaseSecondElement(IRGenFunction &IGF, llvm::Value *data,
Optional<Atomicity> atomicity = None) const {
if (!isPOD(ResilienceExpansion::Maximal)) {
if (!atomicity) atomicity = IGF.getDefaultAtomicity();
IGF.emitNativeStrongRelease(data, *atomicity);
}
}
void emitAssignSecondElement(IRGenFunction &IGF, llvm::Value *context,
Address dataAddr) const {
if (isPOD(ResilienceExpansion::Maximal))
IGF.Builder.CreateStore(context, dataAddr);
else
IGF.emitNativeStrongAssign(context, dataAddr);
}
Address projectFunction(IRGenFunction &IGF, Address address) const {
return projectFirstElement(IGF, address);
}
Address projectData(IRGenFunction &IGF, Address address) const {
return IGF.Builder.CreateStructGEP(address, 1, IGF.IGM.getPointerSize(),
address->getName() + ".data");
}
void strongRetain(IRGenFunction &IGF, Explosion &e,
Atomicity atomicity) const override {
e.claimNext();
emitRetainSecondElement(IGF, e.claimNext(), atomicity);
}
void strongRelease(IRGenFunction &IGF, Explosion &e,
Atomicity atomicity) const override {
e.claimNext();
emitReleaseSecondElement(IGF, e.claimNext(), atomicity);
}
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
void name##LoadStrong(IRGenFunction &IGF, Address src, \
Explosion &out, bool isOptional) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##TakeStrong(IRGenFunction &IGF, Address src, \
Explosion &out, bool isOptional) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##Init(IRGenFunction &IGF, Explosion &in, \
Address dest, bool isOptional) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##Assign(IRGenFunction &IGF, Explosion &in, \
Address dest, bool isOptional) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
}
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
void strongRetain##Name(IRGenFunction &IGF, Explosion &e, \
Atomicity atomicity) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void strongRetain##Name##Release(IRGenFunction &IGF, \
Explosion &e, \
Atomicity atomicity) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##Retain(IRGenFunction &IGF, Explosion &e, \
Atomicity atomicity) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
} \
void name##Release(IRGenFunction &IGF, Explosion &e, \
Atomicity atomicity) const override { \
llvm_unreachable(#name " references to functions are not supported"); \
}
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, name, "...") \
ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, name, "...")
#include "swift/AST/ReferenceStorage.def"
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return getFunctionPointerExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return getFunctionPointerFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T, bool isOutlined)
const override {
src = projectFunction(IGF, src);
return getFunctionPointerExtraInhabitantIndex(IGF, src);
}
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
// Only the function pointer value is used for extra inhabitants.
auto pointerSize = IGM.getPointerSize();
auto mask = BitPatternBuilder(IGM.Triple.isLittleEndian());
mask.appendSetBits(pointerSize.getValueInBits());
mask.appendClearBits(pointerSize.getValueInBits());
return mask.build().getValue();
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T, bool isOutlined)
const override {
dest = projectFunction(IGF, dest);
return storeFunctionPointerExtraInhabitant(IGF, index, dest);
}
};
/// The type-info class for ObjC blocks, which are represented by an ObjC
/// heap pointer.
class BlockTypeInfo : public HeapTypeInfo<BlockTypeInfo>,
public FuncSignatureInfo
{
public:
BlockTypeInfo(CanSILFunctionType ty,
llvm::PointerType *storageType,
Size size, SpareBitVector spareBits, Alignment align)
: HeapTypeInfo(storageType, size, spareBits, align),
FuncSignatureInfo(ty)
{
}
ReferenceCounting getReferenceCounting() const {
return ReferenceCounting::Block;
}
};
/// The type info class for the on-stack representation of an ObjC block.
///
/// TODO: May not be fixed-layout if we capture generics.
class BlockStorageTypeInfo final
: public IndirectTypeInfo<BlockStorageTypeInfo, FixedTypeInfo>
{
Size CaptureOffset;
public:
BlockStorageTypeInfo(llvm::Type *type, Size size, Alignment align,
SpareBitVector &&spareBits,
IsPOD_t pod, IsBitwiseTakable_t bt, Size captureOffset)
: IndirectTypeInfo(type, size, std::move(spareBits), align, pod, bt,
IsFixedSize),
CaptureOffset(captureOffset)
{}
// The lowered type should be an LLVM struct comprising the block header
// (IGM.ObjCBlockStructTy) as its first element and the capture as its
// second.
Address projectBlockHeader(IRGenFunction &IGF, Address storage) const {
return IGF.Builder.CreateStructGEP(storage, 0, Size(0));
}
Address projectCapture(IRGenFunction &IGF, Address storage) const {
return IGF.Builder.CreateStructGEP(storage, 1, CaptureOffset);
}
// TODO
// The frontend will currently never emit copy_addr or destroy_addr for
// block storage.
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
IGF.unimplemented(SourceLoc(), "copying @block_storage");
}
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
IGF.unimplemented(SourceLoc(), "copying @block_storage");
}
void destroy(IRGenFunction &IGF, Address addr, SILType T,
bool isOutlined) const override {
IGF.unimplemented(SourceLoc(), "destroying @block_storage");
}
};
} // end anonymous namespace
const TypeInfo *TypeConverter::convertBlockStorageType(SILBlockStorageType *T) {
// The block storage consists of the block header (ObjCBlockStructTy)
// followed by the lowered type of the capture.
auto &capture = IGM.getTypeInfoForLowered(T->getCaptureType());
// TODO: Support dynamic-sized captures.
const auto *fixedCapture = dyn_cast<FixedTypeInfo>(&capture);
llvm::Type *fixedCaptureTy;
// The block header is pointer aligned. The capture may be worse aligned.
Alignment align = IGM.getPointerAlignment();
Size captureOffset(
IGM.DataLayout.getStructLayout(IGM.ObjCBlockStructTy)->getSizeInBytes());
auto spareBits = BitPatternBuilder(IGM.Triple.isLittleEndian());
spareBits.appendClearBits(captureOffset.getValueInBits());
Size size = captureOffset;
IsPOD_t pod = IsNotPOD;
IsBitwiseTakable_t bt = IsNotBitwiseTakable;
if (!fixedCapture) {
IGM.unimplemented(SourceLoc(), "dynamic @block_storage capture");
fixedCaptureTy = llvm::StructType::get(IGM.getLLVMContext(), {});
} else {
fixedCaptureTy = cast<FixedTypeInfo>(capture).getStorageType();
align = std::max(align, fixedCapture->getFixedAlignment());
captureOffset = captureOffset.roundUpToAlignment(align);
spareBits.padWithSetBitsTo(captureOffset.getValueInBits());
spareBits.append(fixedCapture->getSpareBits());
size = captureOffset + fixedCapture->getFixedSize();
pod = fixedCapture->isPOD(ResilienceExpansion::Maximal);
bt = fixedCapture->isBitwiseTakable(ResilienceExpansion::Maximal);
}
llvm::Type *storageElts[] = {
IGM.ObjCBlockStructTy,
fixedCaptureTy,
};
auto storageTy = llvm::StructType::get(IGM.getLLVMContext(), storageElts,
/*packed*/ false);
return new BlockStorageTypeInfo(storageTy, size, align, spareBits.build(),
pod, bt, captureOffset);
}
Address irgen::projectBlockStorageCapture(IRGenFunction &IGF,
Address storageAddr,
CanSILBlockStorageType storageTy) {
auto &tl = IGF.getTypeInfoForLowered(storageTy).as<BlockStorageTypeInfo>();
return tl.projectCapture(IGF, storageAddr);
}
const TypeInfo *TypeConverter::convertFunctionType(SILFunctionType *T) {
switch (T->getRepresentation()) {
case SILFunctionType::Representation::Block:
return new BlockTypeInfo(CanSILFunctionType(T),
IGM.ObjCBlockPtrTy,
IGM.getPointerSize(),
IGM.getHeapObjectSpareBits(),
IGM.getPointerAlignment());
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Closure:
return ThinFuncTypeInfo::create(CanSILFunctionType(T),
IGM.FunctionPtrTy,
IGM.getPointerSize(),
IGM.getPointerAlignment(),
IGM.getFunctionPointerSpareBits());
case SILFunctionType::Representation::Thick: {
SpareBitVector spareBits;
spareBits.append(IGM.getFunctionPointerSpareBits());
// Although the context pointer of a closure (at least, an escaping one)
// is a refcounted pointer, we'd like to reserve the right to pack small
// contexts into the pointer value, so let's not take any spare bits from
// it.
spareBits.appendClearBits(IGM.getPointerSize().getValueInBits());
if (T->isNoEscape()) {
// @noescape thick functions are trivial types.
return FuncTypeInfo::create(
CanSILFunctionType(T), IGM.NoEscapeFunctionPairTy,
IGM.getPointerSize() * 2, IGM.getPointerAlignment(),
std::move(spareBits), IsPOD);
}
return FuncTypeInfo::create(
CanSILFunctionType(T), IGM.FunctionPairTy, IGM.getPointerSize() * 2,
IGM.getPointerAlignment(), std::move(spareBits), IsNotPOD);
}
}
llvm_unreachable("bad function type representation");
}
Signature FuncSignatureInfo::getSignature(IRGenModule &IGM) const {
// If it's already been filled in, we're done.
if (TheSignature.isValid())
return TheSignature;
// Update the cache and return.
TheSignature = Signature::getUncached(IGM, FormalType);
assert(TheSignature.isValid());
return TheSignature;
}
static const FuncSignatureInfo &
getFuncSignatureInfoForLowered(IRGenModule &IGM, CanSILFunctionType type) {
auto &ti = IGM.getTypeInfoForLowered(type);
switch (type->getRepresentation()) {
case SILFunctionType::Representation::Block:
return ti.as<BlockTypeInfo>();
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::Closure:
return ti.as<ThinFuncTypeInfo>();
case SILFunctionType::Representation::Thick:
return ti.as<FuncTypeInfo>();
}
llvm_unreachable("bad function type representation");
}
Signature
IRGenModule::getSignature(CanSILFunctionType type) {
auto &sigInfo = getFuncSignatureInfoForLowered(*this, type);
return sigInfo.getSignature(*this);
}
llvm::FunctionType *
IRGenModule::getFunctionType(CanSILFunctionType type,
llvm::AttributeList &attrs,
ForeignFunctionInfo *foreignInfo) {
auto &sigInfo = getFuncSignatureInfoForLowered(*this, type);
Signature sig = sigInfo.getSignature(*this);
attrs = sig.getAttributes();
if (foreignInfo) *foreignInfo = sig.getForeignInfo();
return sig.getType();
}
ForeignFunctionInfo
IRGenModule::getForeignFunctionInfo(CanSILFunctionType type) {
if (type->getLanguage() == SILFunctionLanguage::Swift)
return ForeignFunctionInfo();
auto &sigInfo = getFuncSignatureInfoForLowered(*this, type);
return sigInfo.getSignature(*this).getForeignInfo();
}
static void emitApplyArgument(IRGenFunction &IGF,
SILParameterInfo origParam,
SILParameterInfo substParam,
Explosion &in,
Explosion &out) {
auto silConv = IGF.IGM.silConv;
bool isSubstituted =
(silConv.getSILType(substParam) != silConv.getSILType(origParam));
// For indirect arguments, we just need to pass a pointer.
if (silConv.isSILIndirect(origParam)) {
// This address is of the substituted type.
auto addr = in.claimNext();
// If a substitution is in play, just bitcast the address.
if (isSubstituted) {
auto origType =
IGF.IGM.getStoragePointerType(silConv.getSILType(origParam));
addr = IGF.Builder.CreateBitCast(addr, origType);
}
out.add(addr);
return;
}
assert(!silConv.isSILIndirect(origParam)
&& "Unexpected opaque apply parameter.");
// Otherwise, it's an explosion, which we may need to translate,
// both in terms of explosion level and substitution levels.
// Handle the last unsubstituted case.
if (!isSubstituted) {
auto &substArgTI =
cast<LoadableTypeInfo>(IGF.getTypeInfo(silConv.getSILType(substParam)));
substArgTI.reexplode(IGF, in, out);
return;
}
reemitAsUnsubstituted(IGF, silConv.getSILType(origParam),
silConv.getSILType(substParam), in, out);
}
static CanType getArgumentLoweringType(CanType type,
SILParameterInfo paramInfo) {
switch (paramInfo.getConvention()) {
// Capture value parameters by value, consuming them.
case ParameterConvention::Direct_Owned:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Constant:
case ParameterConvention::Indirect_In_Guaranteed:
return type;
// Capture inout parameters by pointer.
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
return CanInOutType::get(type);
}
llvm_unreachable("unhandled convention");
}
static bool isABIIgnoredParameterWithoutStorage(IRGenModule &IGM,
IRGenFunction &IGF,
CanSILFunctionType substType,
unsigned paramIdx) {
auto param = substType->getParameters()[paramIdx];
if (param.isFormalIndirect())
return false;
SILType argType = IGM.silConv.getSILType(param);
auto &ti = IGF.getTypeInfoForLowered(argType.getASTType());
// Empty values don't matter.
return ti.getSchema().empty();
}
/// Find the parameter index for the one (assuming there was only one) partially
/// applied argument ignoring empty types that are not passed as part of the
/// ABI.
static unsigned findSinglePartiallyAppliedParameterIndexIgnoringEmptyTypes(
IRGenFunction &IGF, CanSILFunctionType substType,
CanSILFunctionType outType) {
auto substParameters = substType->getParameters();
auto outParamters = outType->getParameters();
unsigned firstNonEmpty = -1U;
for (unsigned paramIdx = outParamters.size() ; paramIdx != substParameters.size(); ++paramIdx) {
bool isEmpty =
isABIIgnoredParameterWithoutStorage(IGF.IGM, IGF, substType, paramIdx);
assert((isEmpty || firstNonEmpty == -1U) && "Expect at most one partially "
"applied that is passed as an "
"ABI argument");
if (!isEmpty)
firstNonEmpty = paramIdx;
}
assert(firstNonEmpty != -1U);
return firstNonEmpty;
}
/// Emit the forwarding stub function for a partial application.
///
/// If 'layout' is null, there is a single captured value of
/// Swift-refcountable type that is being used directly as the
/// context object.
static llvm::Function *emitPartialApplicationForwarder(IRGenModule &IGM,
const Optional<FunctionPointer> &staticFnPtr,
bool calleeHasContext,
const Signature &origSig,
CanSILFunctionType origType,
CanSILFunctionType substType,
CanSILFunctionType outType,
SubstitutionMap subs,
HeapLayout const *layout,
ArrayRef<ParameterConvention> conventions) {
auto outSig = IGM.getSignature(outType);
llvm::AttributeList outAttrs = outSig.getAttributes();
llvm::FunctionType *fwdTy = outSig.getType();
SILFunctionConventions outConv(outType, IGM.getSILModule());
StringRef FnName;
if (staticFnPtr)
FnName = staticFnPtr->getPointer()->getName();
IRGenMangler Mangler;
std::string thunkName = Mangler.manglePartialApplyForwarder(FnName);
// FIXME: Maybe cache the thunk by function and closure types?.
llvm::Function *fwd =
llvm::Function::Create(fwdTy, llvm::Function::InternalLinkage,
llvm::StringRef(thunkName), &IGM.Module);
fwd->setCallingConv(outSig.getCallingConv());
fwd->setAttributes(outAttrs);
// Merge initial attributes with outAttrs.
llvm::AttrBuilder b;
IGM.constructInitialFnAttributes(b);
fwd->addAttributes(llvm::AttributeList::FunctionIndex, b);
IRGenFunction subIGF(IGM, fwd);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(subIGF, fwd);
Explosion origParams = subIGF.collectParameters();
// Create a new explosion for potentially reabstracted parameters.
Explosion args;
Address resultValueAddr;
{
// Lower the forwarded arguments in the original function's generic context.
GenericContextScope scope(IGM, origType->getGenericSignature());
SILFunctionConventions origConv(origType, IGM.getSILModule());
auto &outResultTI = IGM.getTypeInfo(outConv.getSILResultType());
auto &nativeResultSchema = outResultTI.nativeReturnValueSchema(IGM);
auto &origResultTI = IGM.getTypeInfo(origConv.getSILResultType());
auto &origNativeSchema = origResultTI.nativeReturnValueSchema(IGM);
// Forward the indirect return values. We might have to reabstract the
// return value.
if (nativeResultSchema.requiresIndirect()) {
assert(origNativeSchema.requiresIndirect());
auto resultAddr = origParams.claimNext();
resultAddr = subIGF.Builder.CreateBitCast(
resultAddr, IGM.getStoragePointerType(origConv.getSILResultType()));
args.add(resultAddr);
} else if (origNativeSchema.requiresIndirect()) {
assert(!nativeResultSchema.requiresIndirect());
auto stackAddr = outResultTI.allocateStack(
subIGF, outConv.getSILResultType(), "return.temp");
resultValueAddr = stackAddr.getAddress();
auto resultAddr = subIGF.Builder.CreateBitCast(
resultValueAddr,
IGM.getStoragePointerType(origConv.getSILResultType()));
args.add(resultAddr.getAddress());
}
for (auto resultType : origConv.getIndirectSILResultTypes()) {
auto addr = origParams.claimNext();
addr = subIGF.Builder.CreateBitCast(
addr, IGM.getStoragePointerType(resultType));
args.add(addr);
}
// Reemit the parameters as unsubstituted.
for (unsigned i = 0; i < outType->getParameters().size(); ++i) {
auto origParamInfo = origType->getParameters()[i];
auto &ti = IGM.getTypeInfoForLowered(origParamInfo.getType());
auto schema = ti.getSchema();
auto origParamSILType = IGM.silConv.getSILType(origParamInfo);
// Forward the address of indirect value params.
auto &nativeSchemaOrigParam = ti.nativeParameterValueSchema(IGM);
bool isIndirectParam = origConv.isSILIndirect(origParamInfo);
if (!isIndirectParam && nativeSchemaOrigParam.requiresIndirect()) {
auto addr = origParams.claimNext();
if (addr->getType() != ti.getStorageType()->getPointerTo())
addr = subIGF.Builder.CreateBitCast(addr,
ti.getStorageType()->getPointerTo());
args.add(addr);
continue;
}
auto outTypeParamInfo = outType->getParameters()[i];
// Indirect parameters need no mapping through the native calling
// convention.
if (isIndirectParam) {
emitApplyArgument(subIGF, origParamInfo, outTypeParamInfo, origParams,
args);
continue;
}
// Map from the native calling convention into the explosion schema.
auto outTypeParamSILType = IGM.silConv.getSILType(origParamInfo);
auto &nativeSchemaOutTypeParam =
IGM.getTypeInfo(outTypeParamSILType).nativeParameterValueSchema(IGM);
Explosion nativeParam;
origParams.transferInto(nativeParam, nativeSchemaOutTypeParam.size());
bindPolymorphicParameter(subIGF, origType, substType, nativeParam, i);
Explosion nonNativeParam = nativeSchemaOutTypeParam.mapFromNative(
subIGF.IGM, subIGF, nativeParam, outTypeParamSILType);
assert(nativeParam.empty());
// Emit unsubstituted argument for call.
Explosion nonNativeApplyArg;
emitApplyArgument(subIGF, origParamInfo, outTypeParamInfo, nonNativeParam,
nonNativeApplyArg);
assert(nonNativeParam.empty());
// Map back from the explosion scheme to the native calling convention for
// the call.
Explosion nativeApplyArg = nativeSchemaOrigParam.mapIntoNative(
subIGF.IGM, subIGF, nonNativeApplyArg, origParamSILType, false);
assert(nonNativeApplyArg.empty());
nativeApplyArg.transferInto(args, nativeApplyArg.size());
}
}
struct AddressToDeallocate {
SILType Type;
const TypeInfo &TI;
StackAddress Addr;
};
SmallVector<AddressToDeallocate, 4> addressesToDeallocate;
bool dependsOnContextLifetime = false;
bool consumesContext;
bool needsAllocas = false;
switch (outType->getCalleeConvention()) {
case ParameterConvention::Direct_Owned:
consumesContext = true;
break;
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
consumesContext = false;
break;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Constant:
case ParameterConvention::Indirect_In_Guaranteed:
llvm_unreachable("indirect callables not supported");
}
// Lower the captured arguments in the original function's generic context.
GenericContextScope scope(IGM, origType->getGenericSignature());
// This is where the context parameter appears.
llvm::Value *rawData = nullptr;
Address data;
unsigned nextCapturedField = 0;
if (!layout) {
rawData = origParams.claimNext();
} else if (!layout->isKnownEmpty()) {
rawData = origParams.claimNext();
data = layout->emitCastTo(subIGF, rawData);
// Restore type metadata bindings, if we have them.
if (layout->hasBindings()) {
auto bindingLayout = layout->getElement(nextCapturedField++);
// The bindings should be fixed-layout inside the object, so we can
// pass None here. If they weren't, we'd have a chicken-egg problem.
auto bindingsAddr = bindingLayout.project(subIGF, data, /*offsets*/ None);
layout->getBindings().restore(subIGF, bindingsAddr,
MetadataState::Complete);
}
// There's still a placeholder to claim if the target type is thick
// or there's an error result.
} else if (outType->getRepresentation()==SILFunctionTypeRepresentation::Thick
|| outType->hasErrorResult()) {
llvm::Value *contextPtr = origParams.claimNext(); (void)contextPtr;
assert(contextPtr->getType() == IGM.RefCountedPtrTy);
}
Explosion polyArgs;
// Emit the polymorphic arguments.
assert((subs.hasAnySubstitutableParams()
== hasPolymorphicParameters(origType) ||
(!subs.hasAnySubstitutableParams() && origType->getRepresentation() ==
SILFunctionTypeRepresentation::WitnessMethod))
&& "should have substitutions iff original function is generic");
WitnessMetadata witnessMetadata;
// If we have a layout we might have to bind polymorphic arguments from the
// captured arguments which we will do later. Otherwise, we have to
// potentially bind polymorphic arguments from the context if it was a
// partially applied argument.
bool hasPolymorphicParams = hasPolymorphicParameters(origType);
if (!layout && hasPolymorphicParams) {
assert(conventions.size() == 1);
// We could have either partially applied an argument from the function
// signature or otherwise we could have a closure context to forward. We only
// care for the former for the purpose of reconstructing polymorphic
// parameters from regular arguments.
if (!calleeHasContext) {
unsigned paramI =
findSinglePartiallyAppliedParameterIndexIgnoringEmptyTypes(
subIGF, substType, outType);
auto paramInfo = substType->getParameters()[paramI];
auto &ti = IGM.getTypeInfoForLowered(paramInfo.getType());
Explosion param;
auto ref = rawData;
// We can get a '{ swift.refcounted* }' type for AnyObject on linux.
if (!ti.getStorageType()->isPointerTy() &&
ti.isSingleSwiftRetainablePointer(ResilienceExpansion::Maximal))
ref = subIGF.coerceValue(rawData, ti.getStorageType(),
subIGF.IGM.DataLayout);
else
ref = subIGF.Builder.CreateBitCast(rawData, ti.getStorageType());
param.add(ref);
bindPolymorphicParameter(subIGF, origType, substType, param, paramI);
(void)param.claimAll();
}
emitPolymorphicArguments(subIGF, origType, subs,
&witnessMetadata, polyArgs);
}
auto haveContextArgument =
calleeHasContext || hasSelfContextParameter(origType);
// Witness method calls expect self, followed by the self type followed by,
// the witness table at the end of the parameter list. But polymorphic
// arguments come before this.
bool isWitnessMethodCallee = origType->getRepresentation() ==
SILFunctionTypeRepresentation::WitnessMethod;
Explosion witnessMethodSelfValue;
// If there's a data pointer required, but it's a swift-retainable
// value being passed as the context, just forward it down.
if (!layout) {
assert(conventions.size() == 1);
// We need to retain the parameter if:
// - we received at +0 (either) and are passing as owned
// - we received as unowned and are passing as guaranteed
auto argConvention = conventions[nextCapturedField++];
switch (argConvention) {
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Constant:
case ParameterConvention::Direct_Owned:
if (!consumesContext) subIGF.emitNativeStrongRetain(rawData, subIGF.getDefaultAtomicity());
break;
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Direct_Guaranteed:
dependsOnContextLifetime = true;
if (outType->getCalleeConvention() ==
ParameterConvention::Direct_Unowned) {
subIGF.emitNativeStrongRetain(rawData, subIGF.getDefaultAtomicity());
consumesContext = true;
}
break;
case ParameterConvention::Direct_Unowned:
// Make sure we release later if we received at +1.
if (consumesContext)
dependsOnContextLifetime = true;
break;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
llvm_unreachable("should never happen!");
}
// FIXME: The naming and documentation here isn't ideal. This
// parameter is always present which is evident since we always
// grab a type to cast to, but sometimes after the polymorphic
// arguments. This is just following the lead of existing (and not
// terribly easy to follow) code.
// If there is a context argument, it comes after the polymorphic
// arguments.
auto argIndex = args.size();
if (haveContextArgument)
argIndex += polyArgs.size();
llvm::Type *expectedArgTy = origSig.getType()->getParamType(argIndex);
llvm::Value *argValue;
if (isIndirectFormalParameter(argConvention)) {
// We can use rawData's type for the alloca because it is a swift
// retainable value. Defensively, give it that type. We can't use the
// expectedArgType because it might be a generic parameter and therefore
// have opaque storage.
auto RetainableValue = rawData;
if (RetainableValue->getType() != subIGF.IGM.RefCountedPtrTy)
RetainableValue = subIGF.Builder.CreateBitCast(
RetainableValue, subIGF.IGM.RefCountedPtrTy);
needsAllocas = true;
auto temporary = subIGF.createAlloca(RetainableValue->getType(),
subIGF.IGM.getPointerAlignment(),
"partial-apply.context");
subIGF.Builder.CreateStore(RetainableValue, temporary);