forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLocalTypeData.cpp
738 lines (628 loc) · 25.6 KB
/
LocalTypeData.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
//===--- LocalTypeData.cpp - Local type data search -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for finding and caching local type data
// for a search.
//
//===----------------------------------------------------------------------===//
#include "LocalTypeData.h"
#include "Fulfillment.h"
#include "GenMeta.h"
#include "GenOpaque.h"
#include "GenProto.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "MetadataRequest.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/SIL/SILModule.h"
using namespace swift;
using namespace irgen;
LocalTypeDataKey LocalTypeDataKey::getCachingKey() const {
return { Type, Kind.getCachingKind() };
}
LocalTypeDataKind LocalTypeDataKind::getCachingKind() const {
// Most local type data kinds are already canonical.
if (!isConcreteProtocolConformance()) return *this;
// Map protocol conformances to their root normal conformance.
auto conformance = getConcreteProtocolConformance();
return forConcreteProtocolWitnessTable(conformance->getRootConformance());
}
LocalTypeDataCache &IRGenFunction::getOrCreateLocalTypeData() {
// Lazily allocate it.
if (LocalTypeData) return *LocalTypeData;
LocalTypeData = new LocalTypeDataCache();
return *LocalTypeData;
}
void IRGenFunction::destroyLocalTypeData() {
delete LocalTypeData;
}
OperationCost LocalTypeDataCache::CacheEntry::cost() const {
switch (getKind()) {
case Kind::Concrete:
return cast<ConcreteCacheEntry>(this)->cost();
case Kind::Abstract:
return cast<AbstractCacheEntry>(this)->cost();
}
llvm_unreachable("bad cache entry kind");
}
OperationCost
LocalTypeDataCache::CacheEntry::costForRequest(LocalTypeDataKey key,
DynamicMetadataRequest request) const {
switch (getKind()) {
case Kind::Concrete:
return cast<ConcreteCacheEntry>(this)->costForRequest(key, request);
case Kind::Abstract:
return cast<AbstractCacheEntry>(this)->costForRequest(key, request);
}
llvm_unreachable("bad cache entry kind");
}
OperationCost
LocalTypeDataCache::ConcreteCacheEntry::costForRequest(LocalTypeDataKey key,
DynamicMetadataRequest request) const {
auto totalCost = cost();
if (!immediatelySatisfies(key, request)) {
// Use a lower cost for requests where emitCheckTypeMetadataState can just
// branch on the existing response's returned dynamic state.
totalCost += getCheckTypeMetadataStateCost(request, Value);
}
return totalCost;
}
OperationCost
LocalTypeDataCache::AbstractCacheEntry::costForRequest(LocalTypeDataKey key,
DynamicMetadataRequest request) const {
auto totalCost = cost();
if (!immediatelySatisfies(key, request)) {
totalCost += OperationCost::Call;
}
return totalCost;
}
void LocalTypeDataCache::CacheEntry::erase() const {
switch (getKind()) {
case Kind::Concrete:
delete cast<ConcreteCacheEntry>(this);
return;
case Kind::Abstract:
delete cast<AbstractCacheEntry>(this);
return;
}
llvm_unreachable("bad cache entry kind");
}
static bool immediatelySatisfies(LocalTypeDataKey key,
MetadataState storedState,
DynamicMetadataRequest request) {
assert((storedState == MetadataState::Complete ||
key.Kind.isAnyTypeMetadata()) &&
"non-metadata entry stored with incomplete state");
return request.isSatisfiedBy(storedState);
}
bool LocalTypeDataCache::CacheEntry::immediatelySatisfies(
LocalTypeDataKey key,
DynamicMetadataRequest request) const {
switch (getKind()) {
case Kind::Concrete:
return cast<ConcreteCacheEntry>(this)->immediatelySatisfies(key, request);
case Kind::Abstract:
return cast<AbstractCacheEntry>(this)->immediatelySatisfies(key, request);
}
llvm_unreachable("bad cache entry kind");
}
bool LocalTypeDataCache::ConcreteCacheEntry::immediatelySatisfies(
LocalTypeDataKey key,
DynamicMetadataRequest request) const {
return ::immediatelySatisfies(key, Value.getStaticLowerBoundOnState(),
request);
}
bool LocalTypeDataCache::AbstractCacheEntry::immediatelySatisfies(
LocalTypeDataKey key,
DynamicMetadataRequest request) const {
return ::immediatelySatisfies(key, getState(), request);
}
MetadataResponse
IRGenFunction::tryGetLocalTypeMetadataForLayout(SILType layoutType,
DynamicMetadataRequest request){
auto type = layoutType.getASTType();
// Check under the formal type first.
if (type->isLegalFormalType()) {
if (auto response = tryGetLocalTypeMetadata(type, request))
return response;
}
auto key = LocalTypeDataKey(type,
LocalTypeDataKind::forRepresentationTypeMetadata());
return tryGetLocalTypeMetadata(key, request);
}
MetadataResponse
IRGenFunction::tryGetLocalTypeMetadata(CanType type,
DynamicMetadataRequest request) {
auto key = LocalTypeDataKey(type, LocalTypeDataKind::forFormalTypeMetadata());
return tryGetLocalTypeMetadata(key, request);
}
MetadataResponse
IRGenFunction::tryGetLocalTypeMetadata(LocalTypeDataKey key,
DynamicMetadataRequest request) {
assert(key.Kind.isAnyTypeMetadata());
if (!LocalTypeData) return MetadataResponse();
return LocalTypeData->tryGet(*this, key, /*allow abstract*/ true, request);
}
/// Get local type data if it's possible to do so without emitting code.
/// Specifically, it doesn't call MetadataPath::follow, and therefore
/// it's safe to call from MetadataPath::follow.
///
/// It's okay to call this with any kind of key.
MetadataResponse
IRGenFunction::tryGetConcreteLocalTypeData(LocalTypeDataKey key,
DynamicMetadataRequest request) {
if (!LocalTypeData) return MetadataResponse();
return LocalTypeData->tryGet(*this, key, /*allow abstract*/ false, request);
}
llvm::Value *IRGenFunction::tryGetLocalTypeDataForLayout(SILType type,
LocalTypeDataKind kind) {
return tryGetLocalTypeData(LocalTypeDataKey(type.getASTType(), kind));
}
llvm::Value *IRGenFunction::tryGetLocalTypeData(CanType type,
LocalTypeDataKind kind) {
return tryGetLocalTypeData(LocalTypeDataKey(type, kind));
}
llvm::Value *IRGenFunction::tryGetLocalTypeData(LocalTypeDataKey key) {
assert(!key.Kind.isAnyTypeMetadata());
if (!LocalTypeData) return nullptr;
if (auto response = LocalTypeData->tryGet(*this, key, /*allow abstract*/ true,
MetadataState::Complete))
return response.getMetadata();
return nullptr;
}
MetadataResponse
LocalTypeDataCache::tryGet(IRGenFunction &IGF, LocalTypeDataKey key,
bool allowAbstract, DynamicMetadataRequest request) {
// Use the caching key.
key = key.getCachingKey();
auto it = Map.find(key);
if (it == Map.end()) return MetadataResponse();
auto &chain = it->second;
CacheEntry *best = nullptr;
Optional<OperationCost> bestCost;
CacheEntry *next = chain.Root;
while (next) {
CacheEntry *cur = next;
next = cur->getNext();
// Ignore abstract entries if so requested.
if (!allowAbstract && !isa<ConcreteCacheEntry>(cur))
continue;
// Ignore unacceptable entries.
if (!IGF.isActiveDominancePointDominatedBy(cur->DefinitionPoint))
continue;
// If there's a collision, compare by cost, ignoring higher-cost entries.
if (best) {
// Compute the cost of the best entry if we haven't done so already.
// If that's zero, go ahead and short-circuit out.
if (!bestCost) {
bestCost = best->costForRequest(key, request);
if (*bestCost == OperationCost::Free) break;
}
auto curCost = cur->costForRequest(key, request);
if (curCost >= *bestCost) continue;
// Replace the best cost and fall through.
bestCost = curCost;
}
best = cur;
}
// If we didn't find anything, we're done.
if (!best) return MetadataResponse();
// Okay, we've found the best entry available.
switch (best->getKind()) {
// For concrete caches, this is easy.
case CacheEntry::Kind::Concrete: {
auto entry = cast<ConcreteCacheEntry>(best);
if (entry->immediatelySatisfies(key, request))
return entry->Value;
assert(key.Kind.isAnyTypeMetadata());
// Emit a dynamic check that the type metadata matches the request.
// TODO: we could potentially end up calling this redundantly with a
// dynamic request. Fortunately, those are used only in very narrow
// circumstances.
auto response = emitCheckTypeMetadataState(IGF, request, entry->Value);
// Add a concrete entry for the checked result.
IGF.setScopedLocalTypeData(key, response);
return response;
}
// For abstract caches, we need to follow a path.
case CacheEntry::Kind::Abstract: {
auto entry = cast<AbstractCacheEntry>(best);
// Follow the path.
auto &source = AbstractSources[entry->SourceIndex];
auto response = entry->follow(IGF, source, request);
// Following the path automatically caches at every point along it,
// including the end.
assert(chain.Root->DefinitionPoint == IGF.getActiveDominancePoint());
assert(isa<ConcreteCacheEntry>(chain.Root));
return response;
}
}
llvm_unreachable("bad cache entry kind");
}
MetadataResponse
LocalTypeDataCache::AbstractCacheEntry::follow(IRGenFunction &IGF,
AbstractSource &source,
DynamicMetadataRequest request) const {
switch (source.getKind()) {
case AbstractSource::Kind::TypeMetadata:
return Path.followFromTypeMetadata(IGF, source.getType(),
source.getValue(), request, nullptr);
case AbstractSource::Kind::ProtocolWitnessTable:
return Path.followFromWitnessTable(IGF, source.getType(),
source.getProtocolConformance(),
source.getValue(), request, nullptr);
}
llvm_unreachable("bad source kind");
}
static void maybeEmitDebugInfoForLocalTypeData(IRGenFunction &IGF,
LocalTypeDataKey key,
MetadataResponse value) {
// FIXME: This check doesn't entirely behave correctly for non-transparent
// functions that were inlined into transparent functions. Correct would be to
// check which instruction requests the type metadata and see whether its
// inlined function is transparent.
auto * DS = IGF.getDebugScope();
if (DS && DS->getInlinedFunction() &&
DS->getInlinedFunction()->isTransparent())
return;
// Only for formal type metadata.
if (key.Kind != LocalTypeDataKind::forFormalTypeMetadata())
return;
// Only for archetypes, and not for opened/opaque archetypes.
auto type = dyn_cast<ArchetypeType>(key.Type);
if (!type)
return;
if (!isa<PrimaryArchetypeType>(type))
return;
auto *typeParam = type->getInterfaceType()->castTo<GenericTypeParamType>();
auto name = typeParam->getName().str();
llvm::Value *data = value.getMetadata();
// At -O0, create an alloca to keep the type alive.
if (!IGF.IGM.IRGen.Opts.shouldOptimize()) {
auto alloca =
IGF.createAlloca(data->getType(), IGF.IGM.getPointerAlignment(), name);
IGF.Builder.CreateStore(data, alloca);
data = alloca.getAddress();
}
// Only if debug info is enabled.
if (!IGF.IGM.DebugInfo)
return;
IGF.IGM.DebugInfo->emitTypeMetadata(IGF, data,
typeParam->getDepth(),
typeParam->getIndex(),
name);
}
void
IRGenFunction::setScopedLocalTypeMetadataForLayout(SILType type,
MetadataResponse response) {
auto key = LocalTypeDataKey(type.getASTType(),
LocalTypeDataKind::forRepresentationTypeMetadata());
setScopedLocalTypeData(key, response);
}
void IRGenFunction::setScopedLocalTypeMetadata(CanType type,
MetadataResponse response) {
auto key = LocalTypeDataKey(type, LocalTypeDataKind::forFormalTypeMetadata());
setScopedLocalTypeData(key, response);
}
void IRGenFunction::setScopedLocalTypeData(CanType type,
LocalTypeDataKind kind,
llvm::Value *data) {
assert(!kind.isAnyTypeMetadata());
setScopedLocalTypeData(LocalTypeDataKey(type, kind),
MetadataResponse::forComplete(data));
}
void IRGenFunction::setScopedLocalTypeDataForLayout(SILType type,
LocalTypeDataKind kind,
llvm::Value *data) {
assert(!kind.isAnyTypeMetadata());
setScopedLocalTypeData(LocalTypeDataKey(type.getASTType(), kind),
MetadataResponse::forComplete(data));
}
void IRGenFunction::setScopedLocalTypeData(LocalTypeDataKey key,
MetadataResponse value) {
maybeEmitDebugInfoForLocalTypeData(*this, key, value);
// Register with the active ConditionalDominanceScope if necessary.
bool isConditional = isConditionalDominancePoint();
if (isConditional) {
registerConditionalLocalTypeDataKey(key);
}
getOrCreateLocalTypeData().addConcrete(getActiveDominancePoint(),
isConditional, key, value);
}
void IRGenFunction::setUnscopedLocalTypeMetadata(CanType type,
MetadataResponse response) {
LocalTypeDataKey key(type, LocalTypeDataKind::forFormalTypeMetadata());
setUnscopedLocalTypeData(key, response);
}
void IRGenFunction::setUnscopedLocalTypeData(CanType type,
LocalTypeDataKind kind,
llvm::Value *data) {
assert(!kind.isAnyTypeMetadata());
setUnscopedLocalTypeData(LocalTypeDataKey(type, kind),
MetadataResponse::forComplete(data));
}
void IRGenFunction::setUnscopedLocalTypeData(LocalTypeDataKey key,
MetadataResponse value) {
maybeEmitDebugInfoForLocalTypeData(*this, key, value);
// This is supportable, but it would require ensuring that we add the
// entry after any conditional entries; otherwise the stack discipline
// will get messed up.
assert(!isConditionalDominancePoint() &&
"adding unscoped local type data while in conditional scope");
getOrCreateLocalTypeData().addConcrete(DominancePoint::universal(),
/*conditional*/ false, key, value);
}
void IRGenFunction::bindLocalTypeDataFromTypeMetadata(CanType type,
IsExact_t isExact,
llvm::Value *metadata,
MetadataState state) {
auto response = MetadataResponse::forBounded(metadata, state);
// Remember that we have this type metadata concretely.
if (isExact) {
if (!metadata->hasName()) setTypeMetadataName(IGM, metadata, type);
setScopedLocalTypeMetadata(type, response);
}
// Don't bother adding abstract fulfillments at a conditional dominance
// point; we're too likely to throw them all away.
if (isConditionalDominancePoint())
return;
getOrCreateLocalTypeData()
.addAbstractForTypeMetadata(*this, type, isExact, response);
}
void IRGenFunction::bindLocalTypeDataFromSelfWitnessTable(
const ProtocolConformance *conformance,
llvm::Value *selfTable,
llvm::function_ref<CanType (CanType)> getTypeInContext) {
SILWitnessTable::enumerateWitnessTableConditionalConformances(
conformance,
[&](unsigned index, CanType type, ProtocolDecl *proto) {
auto archetype = getTypeInContext(type);
if (isa<ArchetypeType>(archetype)) {
WitnessIndex wIndex(privateWitnessTableIndexToTableOffset(index),
/*prefix*/ false);
auto table =
emitInvariantLoadOfOpaqueWitness(*this, selfTable,
wIndex.forProtocolWitnessTable());
table = Builder.CreateBitCast(table, IGM.WitnessTablePtrTy);
setProtocolWitnessTableName(IGM, table, archetype, proto);
setUnscopedLocalTypeData(
archetype,
LocalTypeDataKind::forAbstractProtocolWitnessTable(proto),
table);
}
return /*finished?*/ false;
});
}
void LocalTypeDataCache::addAbstractForTypeMetadata(IRGenFunction &IGF,
CanType type,
IsExact_t isExact,
MetadataResponse metadata) {
struct Callback : FulfillmentMap::InterestingKeysCallback {
bool isInterestingType(CanType type) const override {
return true;
}
bool hasInterestingType(CanType type) const override {
return true;
}
bool hasLimitedInterestingConformances(CanType type) const override {
return false;
}
GenericSignature::ConformsToArray
getInterestingConformances(CanType type) const override {
llvm_unreachable("no limits");
}
CanType getSuperclassBound(CanType type) const override {
if (auto arch = dyn_cast<ArchetypeType>(type))
if (auto superclassTy = arch->getSuperclass())
return superclassTy->getCanonicalType();
return CanType();
}
} callbacks;
// Look for anything at all that's fulfilled by this. If we don't find
// anything, stop.
FulfillmentMap fulfillments;
if (!fulfillments.searchTypeMetadata(IGF.IGM, type, isExact,
metadata.getStaticLowerBoundOnState(),
/*source*/ 0, MetadataPath(),
callbacks)) {
return;
}
addAbstractForFulfillments(IGF, std::move(fulfillments),
[&]() -> AbstractSource {
return AbstractSource(type, metadata);
});
}
void LocalTypeDataCache::
addAbstractForFulfillments(IRGenFunction &IGF, FulfillmentMap &&fulfillments,
llvm::function_ref<AbstractSource()> createSource) {
// Add the source lazily.
Optional<unsigned> sourceIndex;
auto getSourceIndex = [&]() -> unsigned {
if (!sourceIndex) {
AbstractSources.emplace_back(createSource());
sourceIndex = AbstractSources.size() - 1;
}
return *sourceIndex;
};
for (auto &fulfillment : fulfillments) {
CanType type = CanType(fulfillment.first.first);
LocalTypeDataKind localDataKind;
// For now, ignore witness-table fulfillments when they're not for
// archetypes.
if (ProtocolDecl *protocol = fulfillment.first.second) {
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
auto conformsTo = archetype->getConformsTo();
auto it = std::find(conformsTo.begin(), conformsTo.end(), protocol);
if (it == conformsTo.end()) continue;
localDataKind = LocalTypeDataKind::forAbstractProtocolWitnessTable(*it);
} else {
continue;
}
} else {
// Ignore type metadata fulfillments for non-dependent types that
// we can produce very cheaply. We don't want to end up emitting
// the type metadata for Int by chasing through N layers of metadata
// just because that path happens to be in the cache.
if (!type->hasArchetype() &&
isTypeMetadataAccessTrivial(IGF.IGM, type)) {
continue;
}
localDataKind = LocalTypeDataKind::forFormalTypeMetadata();
}
// Find the chain for the key.
auto key = getKey(type, localDataKind).getCachingKey();
auto &chain = Map[key];
// Check whether there's already an entry that's at least as good as the
// fulfillment.
Optional<OperationCost> fulfillmentCost;
auto getFulfillmentCost = [&]() -> OperationCost {
if (!fulfillmentCost)
fulfillmentCost = fulfillment.second.Path.cost();
return *fulfillmentCost;
};
bool isConditional = IGF.isConditionalDominancePoint();
bool foundBetter = false;
for (CacheEntry *cur = chain.Root, *last = nullptr; cur;
last = cur, cur = cur->getNext()) {
// Ensure the entry is acceptable.
if (!IGF.isActiveDominancePointDominatedBy(cur->DefinitionPoint))
continue;
// Ensure that the entry isn't better than the fulfillment.
auto curCost = cur->cost();
if (curCost == OperationCost::Free || curCost <= getFulfillmentCost()) {
foundBetter = true;
break;
}
// If the entry is defined at the current point, (1) we know there
// won't be a better entry and (2) we should remove it.
if (cur->DefinitionPoint == IGF.getActiveDominancePoint() &&
!isConditional) {
// Splice it out of the chain.
assert(!cur->isConditional());
chain.eraseEntry(last, cur);
break;
}
}
if (foundBetter) continue;
// Okay, make a new entry.
// Register with the conditional dominance scope if necessary.
if (isConditional) {
IGF.registerConditionalLocalTypeDataKey(key);
}
// Allocate the new entry.
auto newEntry = new AbstractCacheEntry(IGF.getActiveDominancePoint(),
isConditional,
getSourceIndex(),
std::move(fulfillment.second.Path),
fulfillment.second.getState());
// Add it to the front of the chain.
chain.push_front(newEntry);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LocalTypeDataCache::dump() const {
auto &out = llvm::errs();
if (Map.empty()) {
out << "(empty)\n";
return;
}
for (auto &mapEntry : Map) {
mapEntry.first.print(out);
out << " => [";
if (mapEntry.second.Root) out << "\n";
for (auto cur = mapEntry.second.Root; cur; cur = cur->getNext()) {
out << " (";
if (cur->DefinitionPoint.isUniversal()) out << "universal";
else out << cur->DefinitionPoint.as<void>();
out << ") ";
if (cur->isConditional()) out << "conditional ";
switch (cur->getKind()) {
case CacheEntry::Kind::Concrete: {
auto entry = cast<ConcreteCacheEntry>(cur);
auto value = entry->Value.getMetadata();
out << "concrete: " << value << "\n ";
if (!isa<llvm::Instruction>(value)) out << " ";
value->dump();
break;
}
case CacheEntry::Kind::Abstract: {
auto entry = cast<AbstractCacheEntry>(cur);
out << "abstract: source=" << entry->SourceIndex << "\n";
break;
}
}
}
out << "]\n";
}
}
#endif
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LocalTypeDataKey::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
#endif
void LocalTypeDataKey::print(llvm::raw_ostream &out) const {
out << "(" << Type.getPointer()
<< " (" << Type << "), ";
Kind.print(out);
out << ")";
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LocalTypeDataKind::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
#endif
void LocalTypeDataKind::print(llvm::raw_ostream &out) const {
if (isConcreteProtocolConformance()) {
out << "ConcreteConformance(";
getConcreteProtocolConformance()->printName(out);
out << ")";
} else if (isAbstractProtocolConformance()) {
out << "AbstractConformance("
<< getAbstractProtocolConformance()->getName()
<< ")";
} else if (Value == FormalTypeMetadata) {
out << "FormalTypeMetadata";
} else if (Value == RepresentationTypeMetadata) {
out << "RepresentationTypeMetadata";
} else if (Value == ValueWitnessTable) {
out << "ValueWitnessTable";
} else {
assert(isSingletonKind());
ValueWitness witness = ValueWitness(Value - ValueWitnessBase);
out << getValueWitnessName(witness);
}
}
IRGenFunction::ConditionalDominanceScope::~ConditionalDominanceScope() {
IGF.ConditionalDominance = OldScope;
// Remove any conditional entries from the chains that were added in this
// scope.
for (auto &key : RegisteredKeys) {
IGF.LocalTypeData->eraseConditional(key);
}
}
void LocalTypeDataCache::eraseConditional(ArrayRef<LocalTypeDataKey> keys) {
for (auto &key : keys) {
auto &chain = Map[key.getCachingKey()];
// Our ability to simply delete the front of the chain relies on an
// assumption that (1) conditional additions always go to the front of
// the chain and (2) we never add something unconditionally while in
// an unconditional scope.
assert(chain.Root);
assert(chain.Root->isConditional());
chain.eraseEntry(nullptr, chain.Root);
}
}