forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLICM.cpp
813 lines (718 loc) · 27.2 KB
/
LICM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
//===--- LICM.cpp - Loop invariant code motion ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-licm"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/AccessedStorageAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFG.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
namespace {
/// Instructions which can be hoisted:
/// loads, function calls without side effects and (some) exclusivity checks
using InstSet = llvm::SmallPtrSet<SILInstruction *, 8>;
using InstVector = llvm::SmallVector<SILInstruction *, 8>;
/// A subset of instruction which may have side effects.
/// Doesn't contain ones that have special handling (e.g. fix_lifetime)
using WriteSet = SmallPtrSet<SILInstruction *, 8>;
/// Returns true if the \p MayWrites set contains any memory writes which may
/// alias with the memory addressed by \a LI.
template <SILInstructionKind K, typename T>
static bool mayWriteTo(AliasAnalysis *AA, WriteSet &MayWrites,
UnaryInstructionBase<K, T> *Inst) {
for (auto *W : MayWrites)
if (AA->mayWriteToMemory(W, Inst->getOperand())) {
LLVM_DEBUG(llvm::dbgs() << " mayWriteTo\n" << *W << " to "
<< *Inst << "\n");
return true;
}
return false;
}
/// Returns true if the \p MayWrites set contains any memory writes which may
/// alias with any memory which is read by \p AI.
/// Note: This function should only be called on a read-only apply!
static bool mayWriteTo(AliasAnalysis *AA, SideEffectAnalysis *SEA,
WriteSet &MayWrites, ApplyInst *AI) {
FunctionSideEffects E;
SEA->getCalleeEffects(E, AI);
assert(E.getMemBehavior(RetainObserveKind::IgnoreRetains) <=
SILInstruction::MemoryBehavior::MayRead &&
"apply should only read from memory");
assert(!E.getGlobalEffects().mayRead() &&
"apply should not have global effects");
for (unsigned Idx = 0, End = AI->getNumArguments(); Idx < End; ++Idx) {
auto &ArgEffect = E.getParameterEffects()[Idx];
assert(!ArgEffect.mayRelease() && "apply should only read from memory");
if (!ArgEffect.mayRead())
continue;
SILValue Arg = AI->getArgument(Idx);
// Check if the memory addressed by the argument may alias any writes.
for (auto *W : MayWrites) {
if (AA->mayWriteToMemory(W, Arg)) {
LLVM_DEBUG(llvm::dbgs() << " mayWriteTo\n" << *W << " to "
<< *AI << "\n");
return true;
}
}
}
return false;
}
static bool hasLoopInvariantOperands(SILInstruction *I, SILLoop *L) {
auto Opds = I->getAllOperands();
return std::all_of(Opds.begin(), Opds.end(), [=](Operand &Op) {
ValueBase *Def = Op.get();
// Operand is defined outside the loop.
if (auto *Inst = Def->getDefiningInstruction())
return !L->contains(Inst->getParent());
if (auto *Arg = dyn_cast<SILArgument>(Def))
return !L->contains(Arg->getParent());
return false;
});
}
// When Hoisting / Sinking,
// Don't descend into control-dependent code.
// Only traverse into basic blocks that dominate all exits.
static void getDominatingBlocks(SmallVectorImpl<SILBasicBlock *> &domBlocks,
SILLoop *Loop, DominanceInfo *DT) {
auto HeaderBB = Loop->getHeader();
auto DTRoot = DT->getNode(HeaderBB);
SmallVector<SILBasicBlock *, 8> ExitingBBs;
Loop->getExitingBlocks(ExitingBBs);
for (llvm::df_iterator<DominanceInfoNode *> It = llvm::df_begin(DTRoot),
E = llvm::df_end(DTRoot);
It != E;) {
auto *CurBB = It->getBlock();
// Don't decent into control-dependent code. Only traverse into basic blocks
// that dominate all exits.
if (!std::all_of(ExitingBBs.begin(), ExitingBBs.end(),
[=](SILBasicBlock *ExitBB) {
return DT->dominates(CurBB, ExitBB);
})) {
LLVM_DEBUG(llvm::dbgs() << " skipping conditional block "
<< *CurBB << "\n");
It.skipChildren();
continue;
}
domBlocks.push_back(CurBB);
// Next block in dominator tree.
++It;
}
}
static bool hoistInstruction(DominanceInfo *DT, SILInstruction *Inst,
SILLoop *Loop, SILBasicBlock *&Preheader) {
if (!hasLoopInvariantOperands(Inst, Loop)) {
LLVM_DEBUG(llvm::dbgs() << " loop variant operands\n");
return false;
}
auto mvBefore = Preheader->getTerminator();
ArraySemanticsCall semCall(Inst);
if (semCall.canHoist(mvBefore, DT)) {
semCall.hoist(mvBefore, DT);
} else {
Inst->moveBefore(mvBefore);
}
return true;
}
static bool hoistInstructions(SILLoop *Loop, DominanceInfo *DT,
InstSet &HoistUpSet) {
LLVM_DEBUG(llvm::dbgs() << " Hoisting instructions.\n");
auto Preheader = Loop->getLoopPreheader();
assert(Preheader && "Expected a preheader");
bool Changed = false;
SmallVector<SILBasicBlock *, 8> domBlocks;
getDominatingBlocks(domBlocks, Loop, DT);
for (auto *CurBB : domBlocks) {
// We know that the block is guaranteed to be executed. Hoist if we can.
for (auto InstIt = CurBB->begin(), E = CurBB->end(); InstIt != E;) {
SILInstruction *Inst = &*InstIt;
++InstIt;
LLVM_DEBUG(llvm::dbgs() << " looking at " << *Inst);
if (!HoistUpSet.count(Inst)) {
continue;
}
if (!hoistInstruction(DT, Inst, Loop, Preheader)) {
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Hoisted " << *Inst);
Changed = true;
}
}
return Changed;
}
/// Summary of may writes occurring in the loop tree rooted at \p
/// Loop. This includes all writes of the sub loops and the loop itself.
struct LoopNestSummary {
SILLoop *Loop;
WriteSet MayWrites;
LoopNestSummary(SILLoop *Curr) : Loop(Curr) {}
void copySummary(LoopNestSummary &Other) {
MayWrites.insert(Other.MayWrites.begin(), Other.MayWrites.end());
}
LoopNestSummary(const LoopNestSummary &) = delete;
LoopNestSummary &operator=(const LoopNestSummary &) = delete;
LoopNestSummary(LoopNestSummary &&) = delete;
};
static unsigned getEdgeIndex(SILBasicBlock *BB, SILBasicBlock *ExitingBB) {
auto Succs = ExitingBB->getSuccessors();
for (unsigned EdgeIdx = 0; EdgeIdx < Succs.size(); ++EdgeIdx) {
SILBasicBlock *CurrBB = Succs[EdgeIdx];
if (CurrBB == BB) {
return EdgeIdx;
}
}
llvm_unreachable("BB is not a Successor");
}
static bool sinkInstruction(DominanceInfo *DT,
std::unique_ptr<LoopNestSummary> &LoopSummary,
SILInstruction *Inst, SILLoopInfo *LI) {
auto *Loop = LoopSummary->Loop;
SmallVector<SILBasicBlock *, 8> ExitBBs;
Loop->getExitBlocks(ExitBBs);
SmallVector<SILBasicBlock *, 8> NewExitBBs;
SmallVector<SILBasicBlock *, 8> ExitingBBs;
Loop->getExitingBlocks(ExitingBBs);
auto *ExitBB = Loop->getExitBlock();
bool Changed = false;
for (auto *ExitingBB : ExitingBBs) {
SmallVector<SILBasicBlock *, 8> BBSuccessors;
auto Succs = ExitingBB->getSuccessors();
for (unsigned EdgeIdx = 0; EdgeIdx < Succs.size(); ++EdgeIdx) {
SILBasicBlock *BB = Succs[EdgeIdx];
BBSuccessors.push_back(BB);
}
while (!BBSuccessors.empty()) {
SILBasicBlock *BB = BBSuccessors.pop_back_val();
if (std::find(NewExitBBs.begin(), NewExitBBs.end(), BB) !=
NewExitBBs.end()) {
// Already got a copy there
continue;
}
auto EdgeIdx = getEdgeIndex(BB, ExitingBB);
SILBasicBlock *OutsideBB = nullptr;
if (std::find(ExitBBs.begin(), ExitBBs.end(), BB) != ExitBBs.end()) {
auto *SplitBB =
splitCriticalEdge(ExitingBB->getTerminator(), EdgeIdx, DT, LI);
OutsideBB = SplitBB ? SplitBB : BB;
NewExitBBs.push_back(OutsideBB);
}
if (!OutsideBB) {
continue;
}
// If OutsideBB already contains Inst -> skip
// This might happen if we have a conditional control flow
// And a pair
// We hoisted the first part, we can safely ignore sinking
auto matchPred = [&](SILInstruction &CurrIns) {
return Inst->isIdenticalTo(&CurrIns);
};
if (std::find_if(OutsideBB->begin(), OutsideBB->end(), matchPred) !=
OutsideBB->end()) {
LLVM_DEBUG(llvm::errs() << " instruction already at exit BB "
<< *Inst);
ExitBB = nullptr;
} else if (ExitBB) {
// easy case
LLVM_DEBUG(llvm::errs() << " moving instruction to exit BB " << *Inst);
Inst->moveBefore(&*OutsideBB->begin());
} else {
LLVM_DEBUG(llvm::errs() << " cloning instruction to exit BB "
<< *Inst);
Inst->clone(&*OutsideBB->begin());
}
Changed = true;
}
}
if (Changed && !ExitBB) {
// Created clones of instruction
// Remove it from the may write set - dangling pointer
LoopSummary->MayWrites.erase(Inst);
Inst->getParent()->erase(Inst);
}
return Changed;
}
static bool sinkInstructions(std::unique_ptr<LoopNestSummary> &LoopSummary,
DominanceInfo *DT, SILLoopInfo *LI,
InstVector &SinkDownSet) {
auto *Loop = LoopSummary->Loop;
LLVM_DEBUG(llvm::errs() << " Sink instructions attempt\n");
SmallVector<SILBasicBlock *, 8> domBlocks;
getDominatingBlocks(domBlocks, Loop, DT);
bool Changed = false;
for (auto *Inst : SinkDownSet) {
// only sink if the block is guaranteed to be executed.
if (std::find(domBlocks.begin(), domBlocks.end(), Inst->getParent()) ==
domBlocks.end()) {
continue;
}
Changed |= sinkInstruction(DT, LoopSummary, Inst, LI);
}
return Changed;
}
static void getEndAccesses(BeginAccessInst *BI,
SmallVectorImpl<EndAccessInst *> &EndAccesses) {
for (auto Use : BI->getUses()) {
auto *User = Use->getUser();
auto *EI = dyn_cast<EndAccessInst>(User);
if (!EI) {
continue;
}
EndAccesses.push_back(EI);
}
}
static bool
hoistSpecialInstruction(std::unique_ptr<LoopNestSummary> &LoopSummary,
DominanceInfo *DT, SILLoopInfo *LI, InstVector &Special) {
auto *Loop = LoopSummary->Loop;
LLVM_DEBUG(llvm::errs() << " Hoist and Sink pairs attempt\n");
auto Preheader = Loop->getLoopPreheader();
assert(Preheader && "Expected a preheader");
bool Changed = false;
for (auto *Inst : Special) {
if (!hoistInstruction(DT, Inst, Loop, Preheader)) {
continue;
}
if (auto *BI = dyn_cast<BeginAccessInst>(Inst)) {
SmallVector<EndAccessInst *, 2> Ends;
getEndAccesses(BI, Ends);
LLVM_DEBUG(llvm::dbgs() << "Hoisted BeginAccess " << *BI);
for (auto *instSink : Ends) {
if (!sinkInstruction(DT, LoopSummary, instSink, LI)) {
llvm_unreachable("LICM: Could not perform must-sink instruction");
}
}
LLVM_DEBUG(llvm::errs() << " Successfully hoisted and sank pair\n");
} else {
LLVM_DEBUG(llvm::dbgs() << "Hoisted RefElementAddr "
<< *static_cast<RefElementAddrInst *>(Inst));
}
Changed = true;
}
return Changed;
}
/// Optimize the loop tree bottom up propagating loop's summaries up the
/// loop tree.
class LoopTreeOptimization {
llvm::DenseMap<SILLoop *, std::unique_ptr<LoopNestSummary>>
LoopNestSummaryMap;
SmallVector<SILLoop *, 8> BotUpWorkList;
SILLoopInfo *LoopInfo;
AliasAnalysis *AA;
SideEffectAnalysis *SEA;
DominanceInfo *DomTree;
AccessedStorageAnalysis *ASA;
bool Changed;
/// True if LICM is done on high-level SIL, i.e. semantic calls are not
/// inlined yet. In this case some semantic calls can be hoisted.
bool RunsOnHighLevelSIL;
/// Instructions that we may be able to hoist up
InstSet HoistUp;
/// Instructions that we may be able to sink down
InstVector SinkDown;
/// Hoistable Instructions that need special treatment
/// e.g. begin_access
InstVector SpecialHoist;
public:
LoopTreeOptimization(SILLoop *TopLevelLoop, SILLoopInfo *LI,
AliasAnalysis *AA, SideEffectAnalysis *SEA,
DominanceInfo *DT, AccessedStorageAnalysis *ASA,
bool RunsOnHighLevelSil)
: LoopInfo(LI), AA(AA), SEA(SEA), DomTree(DT), ASA(ASA), Changed(false),
RunsOnHighLevelSIL(RunsOnHighLevelSil) {
// Collect loops for a recursive bottom-up traversal in the loop tree.
BotUpWorkList.push_back(TopLevelLoop);
for (unsigned i = 0; i < BotUpWorkList.size(); ++i) {
auto *L = BotUpWorkList[i];
for (auto *SubLoop : *L)
BotUpWorkList.push_back(SubLoop);
}
}
/// Optimize this loop tree.
bool optimize();
protected:
/// Propagate the sub-loops' summaries up to the current loop.
void propagateSummaries(std::unique_ptr<LoopNestSummary> &CurrSummary);
/// Collect a set of instructions that can be hoisted
void analyzeCurrentLoop(std::unique_ptr<LoopNestSummary> &CurrSummary);
/// Optimize the current loop nest.
bool optimizeLoop(std::unique_ptr<LoopNestSummary> &CurrSummary);
};
} // end anonymous namespace
bool LoopTreeOptimization::optimize() {
// Process loops bottom up in the loop tree.
while (!BotUpWorkList.empty()) {
SILLoop *CurrentLoop = BotUpWorkList.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Processing loop " << *CurrentLoop);
// Collect all summary of all sub loops of the current loop. Since we
// process the loop tree bottom up they are guaranteed to be available in
// the map.
auto CurrLoopSummary = llvm::make_unique<LoopNestSummary>(CurrentLoop);
propagateSummaries(CurrLoopSummary);
// If the current loop changed, then we might reveal more instr to hoist
// For example, a fix_lifetime's operand, if hoisted outside,
// Might allow us to sink the instruction out of the loop
bool currChanged = false;
do {
currChanged = false;
// Analyze the current loop for instructions that can be hoisted.
analyzeCurrentLoop(CurrLoopSummary);
currChanged = optimizeLoop(CurrLoopSummary);
// Reset the data structures for next loop in the list
HoistUp.clear();
SinkDown.clear();
SpecialHoist.clear();
} while (currChanged);
// Store the summary for parent loops to use.
LoopNestSummaryMap[CurrentLoop] = std::move(CurrLoopSummary);
}
return Changed;
}
void LoopTreeOptimization::propagateSummaries(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
for (auto *SubLoop : *CurrSummary->Loop) {
assert(LoopNestSummaryMap.count(SubLoop) && "Must have data for sub loops");
CurrSummary->copySummary(*LoopNestSummaryMap[SubLoop]);
LoopNestSummaryMap.erase(SubLoop);
}
}
static bool isSafeReadOnlyApply(SideEffectAnalysis *SEA, ApplyInst *AI) {
FunctionSideEffects E;
SEA->getCalleeEffects(E, AI);
if (E.getGlobalEffects().mayRead()) {
// If we have Global effects,
// we don't know which memory is read in the callee.
// Therefore we bail for safety
return false;
}
auto MB = E.getMemBehavior(RetainObserveKind::ObserveRetains);
return (MB <= SILInstruction::MemoryBehavior::MayRead);
}
static void checkSideEffects(swift::SILInstruction &Inst, WriteSet &MayWrites) {
if (Inst.mayHaveSideEffects()) {
MayWrites.insert(&Inst);
}
}
/// Returns true if the \p Inst follows the default hoisting heuristic
static bool canHoistUpDefault(SILInstruction *inst, SILLoop *Loop,
DominanceInfo *DT, bool RunsOnHighLevelSil) {
auto Preheader = Loop->getLoopPreheader();
if (!Preheader) {
return false;
}
if (isa<TermInst>(inst) || isa<AllocationInst>(inst) ||
isa<DeallocationInst>(inst)) {
return false;
}
if (inst->getMemoryBehavior() == SILInstruction::MemoryBehavior::None) {
return true;
}
if (!RunsOnHighLevelSil) {
return false;
}
// We can’t hoist everything that is hoist-able
// The canHoist method does not do all the required analysis
// Some of the work is done at COW Array Opt
// TODO: Refactor COW Array Opt + canHoist - radar 41601468
ArraySemanticsCall semCall(inst);
switch (semCall.getKind()) {
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
return semCall.canHoist(Preheader->getTerminator(), DT);
default:
return false;
}
}
// Check If all the end accesses of the given begin do not prevent hoisting
// There are only two legal placements for the end access instructions:
// 1) Inside the same loop (sink to loop exists)
// Potential TODO: At loop exit block
static bool handledEndAccesses(BeginAccessInst *BI, SILLoop *Loop) {
SmallVector<EndAccessInst *, 2> AllEnds;
getEndAccesses(BI, AllEnds);
if (AllEnds.empty()) {
return false;
}
for (auto *User : AllEnds) {
auto *BB = User->getParent();
if (Loop->getBlocksSet().count(BB) != 0) {
continue;
}
return false;
}
return true;
}
static bool isCoveredByScope(BeginAccessInst *BI, DominanceInfo *DT,
SILInstruction *applyInstr) {
if (!DT->dominates(BI, applyInstr))
return false;
for (auto *EI : BI->getEndAccesses()) {
if (!DT->dominates(applyInstr, EI))
return false;
}
return true;
}
static bool analyzeBeginAccess(BeginAccessInst *BI,
SmallVector<BeginAccessInst *, 8> &BeginAccesses,
SmallVector<FullApplySite, 8> &fullApplies,
WriteSet &MayWrites,
AccessedStorageAnalysis *ASA,
DominanceInfo *DT) {
const AccessedStorage &storage =
findAccessedStorageNonNested(BI->getSource());
if (!storage) {
return false;
}
auto BIAccessedStorageNonNested = findAccessedStorageNonNested(BI);
auto safeBeginPred = [&](BeginAccessInst *OtherBI) {
if (BI == OtherBI) {
return true;
}
return BIAccessedStorageNonNested.isDistinctFrom(
findAccessedStorageNonNested(OtherBI));
};
if (!std::all_of(BeginAccesses.begin(), BeginAccesses.end(), safeBeginPred))
return false;
for (auto fullApply : fullApplies) {
FunctionAccessedStorage callSiteAccesses;
ASA->getCallSiteEffects(callSiteAccesses, fullApply);
SILAccessKind accessKind = BI->getAccessKind();
if (!callSiteAccesses.mayConflictWith(accessKind, storage))
continue;
// Check if we can ignore this conflict:
// If the apply is “sandwiched” between the begin and end access,
// there’s no reason we can’t hoist out of the loop.
auto *applyInstr = fullApply.getInstruction();
if (!isCoveredByScope(BI, DT, applyInstr))
return false;
}
// Check may releases
// Only class and global access that may alias would conflict
const AccessedStorage::Kind kind = storage.getKind();
if (kind != AccessedStorage::Class && kind != AccessedStorage::Global) {
return true;
}
// TODO Introduce "Pure Swift" deinitializers
// We can then make use of alias information for instr's operands
// If they don't alias - we might get away with not recording a conflict
for (auto mayWrite : MayWrites) {
// we actually compute all MayWrites in analyzeCurrentLoop
if (!mayWrite->mayRelease()) {
continue;
}
if (!isCoveredByScope(BI, DT, mayWrite))
return false;
}
return true;
}
// Analyzes current loop for hosting/sinking potential:
// Computes set of instructions we may be able to move out of the loop
// Important Note:
// We can't bail out of this method! we have to run it on all loops.
// We *need* to discover all MayWrites -
// even if the loop is otherwise skipped!
// This is because outer loops will depend on the inner loop's writes.
void LoopTreeOptimization::analyzeCurrentLoop(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
WriteSet &MayWrites = CurrSummary->MayWrites;
SILLoop *Loop = CurrSummary->Loop;
LLVM_DEBUG(llvm::dbgs() << " Analyzing accesses.\n");
// Contains function calls in the loop, which only read from memory.
SmallVector<ApplyInst *, 8> ReadOnlyApplies;
// Contains Loads inside the loop.
SmallVector<LoadInst *, 8> Loads;
// Contains fix_lifetime, we might be able to sink them.
SmallVector<FixLifetimeInst *, 8> FixLifetimes;
// Contains begin_access, we might be able to hoist them.
SmallVector<BeginAccessInst *, 8> BeginAccesses;
// Contains all applies - used for begin_access
SmallVector<FullApplySite, 8> fullApplies;
for (auto *BB : Loop->getBlocks()) {
for (auto &Inst : *BB) {
switch (Inst.getKind()) {
case SILInstructionKind::FixLifetimeInst: {
auto *FL = dyn_cast<FixLifetimeInst>(&Inst);
assert(FL && "Expected a FixLifetime instruction");
FixLifetimes.push_back(FL);
// We can ignore the side effects of FixLifetimes
break;
}
case SILInstructionKind::LoadInst: {
auto *LI = dyn_cast<LoadInst>(&Inst);
assert(LI && "Expected a Load instruction");
Loads.push_back(LI);
break;
}
case SILInstructionKind::BeginAccessInst: {
auto *BI = dyn_cast<BeginAccessInst>(&Inst);
assert(BI && "Expected a Begin Access");
BeginAccesses.push_back(BI);
checkSideEffects(Inst, MayWrites);
break;
}
case SILInstructionKind::RefElementAddrInst: {
auto *REA = static_cast<RefElementAddrInst *>(&Inst);
SpecialHoist.push_back(REA);
break;
}
case swift::SILInstructionKind::CondFailInst: {
// We can (and must) hoist cond_fail instructions if the operand is
// invariant. We must hoist them so that we preserve memory safety. A
// cond_fail that would have protected (executed before) a memory access
// must - after hoisting - also be executed before said access.
HoistUp.insert(&Inst);
checkSideEffects(Inst, MayWrites);
break;
}
case SILInstructionKind::ApplyInst: {
auto *AI = dyn_cast<ApplyInst>(&Inst);
assert(AI && "Expected an Apply Instruction");
if (isSafeReadOnlyApply(SEA, AI)) {
ReadOnlyApplies.push_back(AI);
}
// check for array semantics and side effects - same as default
LLVM_FALLTHROUGH;
}
default: {
if (auto fullApply = FullApplySite::isa(&Inst)) {
fullApplies.push_back(fullApply);
}
checkSideEffects(Inst, MayWrites);
if (canHoistUpDefault(&Inst, Loop, DomTree, RunsOnHighLevelSIL)) {
HoistUp.insert(&Inst);
}
break;
}
}
}
}
auto *Preheader = Loop->getLoopPreheader();
if (!Preheader) {
// Can't hoist/sink instructions
return;
}
for (auto *AI : ReadOnlyApplies) {
if (!mayWriteTo(AA, SEA, MayWrites, AI)) {
HoistUp.insert(AI);
}
}
for (auto *LI : Loads) {
if (!mayWriteTo(AA, MayWrites, LI)) {
HoistUp.insert(LI);
}
}
bool mayWritesMayRelease =
std::any_of(MayWrites.begin(), MayWrites.end(),
[&](SILInstruction *W) { return W->mayRelease(); });
for (auto *FL : FixLifetimes) {
if (!DomTree->dominates(FL->getOperand()->getParentBlock(), Preheader)) {
continue;
}
if (!mayWriteTo(AA, MayWrites, FL) || !mayWritesMayRelease) {
SinkDown.push_back(FL);
}
}
for (auto *BI : BeginAccesses) {
if (!handledEndAccesses(BI, Loop)) {
LLVM_DEBUG(llvm::dbgs() << "Skipping: " << *BI);
LLVM_DEBUG(llvm::dbgs() << "Some end accesses can't be handled\n");
continue;
}
if (analyzeBeginAccess(BI, BeginAccesses, fullApplies, MayWrites, ASA,
DomTree)) {
SpecialHoist.push_back(BI);
}
}
}
bool LoopTreeOptimization::optimizeLoop(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
auto *CurrentLoop = CurrSummary->Loop;
// We only support Loops with a preheader
if (!CurrentLoop->getLoopPreheader())
return false;
bool currChanged = false;
currChanged |= hoistInstructions(CurrentLoop, DomTree, HoistUp);
currChanged |= sinkInstructions(CurrSummary, DomTree, LoopInfo, SinkDown);
currChanged |=
hoistSpecialInstruction(CurrSummary, DomTree, LoopInfo, SpecialHoist);
Changed |= currChanged;
return currChanged;
}
namespace {
/// Hoist loop invariant code out of innermost loops.
///
/// Transforms are identified by type, not instance. Split this
/// Into two types: "High-level Loop Invariant Code Motion"
/// and "Loop Invariant Code Motion".
class LICM : public SILFunctionTransform {
public:
LICM(bool RunsOnHighLevelSil) : RunsOnHighLevelSil(RunsOnHighLevelSil) {}
/// True if LICM is done on high-level SIL, i.e. semantic calls are not
/// inlined yet. In this case some semantic calls can be hoisted.
/// We only hoist semantic calls on high-level SIL because we can be sure that
/// e.g. an Array as SILValue is really immutable (including its content).
bool RunsOnHighLevelSil;
void run() override {
SILFunction *F = getFunction();
// If our function has ownership, skip it.
if (F->hasOwnership())
return;
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
SILLoopInfo *LoopInfo = LA->get(F);
if (LoopInfo->empty()) {
LLVM_DEBUG(llvm::dbgs() << "No loops in " << F->getName() << "\n");
return;
}
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
AliasAnalysis *AA = PM->getAnalysis<AliasAnalysis>();
SideEffectAnalysis *SEA = PM->getAnalysis<SideEffectAnalysis>();
AccessedStorageAnalysis *ASA = getAnalysis<AccessedStorageAnalysis>();
DominanceInfo *DomTree = nullptr;
LLVM_DEBUG(llvm::dbgs() << "Processing loops in " << F->getName() << "\n");
bool Changed = false;
for (auto *TopLevelLoop : *LoopInfo) {
if (!DomTree) DomTree = DA->get(F);
LoopTreeOptimization Opt(TopLevelLoop, LoopInfo, AA, SEA, DomTree, ASA,
RunsOnHighLevelSil);
Changed |= Opt.optimize();
}
if (Changed) {
LA->lockInvalidation();
DA->lockInvalidation();
PM->invalidateAnalysis(F, SILAnalysis::InvalidationKind::FunctionBody);
LA->unlockInvalidation();
DA->unlockInvalidation();
}
}
};
} // end anonymous namespace
SILTransform *swift::createLICM() {
return new LICM(false);
}
SILTransform *swift::createHighLevelLICM() {
return new LICM(true);
}