forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeadObjectElimination.cpp
864 lines (746 loc) · 31.2 KB
/
DeadObjectElimination.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
//===--- DeadObjectElimination.cpp - Remove unused objects ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates store only alloc_ref objects that have destructors
// without side effects.
//
// The high level overview of the algorithm is that first it visits the
// destructor and attempts to prove that the destructor is well behaved, i.e. it
// does not have any side effects outside of the destructor itself. If the
// destructor can be proven to be well behaved, it then goes through the use
// list of the alloc_ref and attempts to prove that the alloc_ref does not
// escape or is used in a way that could cause side effects. If both of those
// conditions apply, the alloc_ref and its entire use graph is eliminated.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dead-object-elim"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Utils/IndexTrie.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(DeadAllocRefEliminated,
"number of AllocRef instructions removed");
STATISTIC(DeadAllocStackEliminated,
"number of AllocStack instructions removed");
STATISTIC(DeadKeyPathEliminated,
"number of keypath instructions removed");
STATISTIC(DeadAllocApplyEliminated,
"number of allocating Apply instructions removed");
using UserList = llvm::SmallSetVector<SILInstruction *, 16>;
// Analyzing the body of this class destructor is valid because the object is
// dead. This means that the object is never passed to objc_setAssociatedObject,
// so its destructor cannot be extended at runtime.
static SILFunction *getDestructor(AllocRefInst *ARI) {
// We only support classes.
ClassDecl *ClsDecl = ARI->getType().getClassOrBoundGenericClass();
if (!ClsDecl)
return nullptr;
// Look up the destructor of ClsDecl.
DestructorDecl *Destructor = ClsDecl->getDestructor();
assert(Destructor && "getDestructor() should never return a nullptr.");
// Find the destructor name via SILDeclRef.
// FIXME: When destructors get moved into vtables, update this to use the
// vtable for the class.
SILDeclRef Ref(Destructor);
SILFunction *Fn = ARI->getModule().lookUpFunction(Ref);
if (!Fn || Fn->empty()) {
LLVM_DEBUG(llvm::dbgs() << " Could not find destructor.\n");
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << " Found destructor!\n");
// If the destructor has an objc_method calling convention, we cannot
// analyze it since it could be swapped out from under us at runtime.
if (Fn->getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod) {
LLVM_DEBUG(llvm::dbgs() << " Found Objective-C destructor. Can't "
"analyze!\n");
return nullptr;
}
return Fn;
}
/// Analyze the destructor for the class of ARI to see if any instructions in it
/// could have side effects on the program outside the destructor. If it does
/// not, then we can eliminate the destructor.
static bool doesDestructorHaveSideEffects(AllocRefInst *ARI) {
SILFunction *Fn = getDestructor(ARI);
// If we can't find a constructor then assume it has side effects.
if (!Fn)
return true;
// A destructor only has one argument, self.
assert(Fn->begin()->getNumArguments() == 1 &&
"Destructor should have only one argument, self.");
SILArgument *Self = Fn->begin()->getArgument(0);
LLVM_DEBUG(llvm::dbgs() << " Analyzing destructor.\n");
// For each BB in the destructor...
for (auto &BB : *Fn)
// For each instruction I in BB...
for (auto &I : BB) {
LLVM_DEBUG(llvm::dbgs() << " Visiting: " << I);
// If I has no side effects, we can ignore it.
if (!I.mayHaveSideEffects()) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! Instruction has no side "
"effects.\n");
continue;
}
// RefCounting operations on Self are ok since we are already in the
// destructor. RefCountingOperations on other instructions could have side
// effects though.
if (auto *RefInst = dyn_cast<RefCountingInst>(&I)) {
if (stripCasts(RefInst->getOperand(0)) == Self) {
// For now all ref counting insts have 1 operand. Put in an assert
// just in case.
assert(RefInst->getNumOperands() == 1 &&
"Make sure RefInst only has one argument.");
LLVM_DEBUG(llvm::dbgs() << " SAFE! Ref count operation on "
"Self.\n");
continue;
} else {
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Ref count operation "
"not on self.\n");
return true;
}
}
// dealloc_stack can be ignored.
if (isa<DeallocStackInst>(I)) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! dealloc_stack can be "
"ignored.\n");
continue;
}
// dealloc_ref on self can be ignored, but dealloc_ref on anything else
// cannot be eliminated.
if (auto *DeallocRef = dyn_cast<DeallocRefInst>(&I)) {
if (stripCasts(DeallocRef->getOperand()) == Self) {
LLVM_DEBUG(llvm::dbgs() <<" SAFE! dealloc_ref on self.\n");
continue;
} else {
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! dealloc_ref on value "
"besides self.\n");
return true;
}
}
// Storing into the object can be ignored.
if (auto *SI = dyn_cast<StoreInst>(&I))
if (stripAddressProjections(SI->getDest()) == Self) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! Instruction is a store "
"into self.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Unknown instruction.\n");
// Otherwise, we can't remove the deallocation completely.
return true;
}
// We didn't find any side effects.
return false;
}
void static
removeInstructions(ArrayRef<SILInstruction*> UsersToRemove) {
for (auto *I : UsersToRemove) {
I->replaceAllUsesOfAllResultsWithUndef();
// Now we know that I should not have any uses... erase it from its parent.
I->eraseFromParent();
}
}
//===----------------------------------------------------------------------===//
// Use Graph Analysis
//===----------------------------------------------------------------------===//
/// Returns false if Inst is an instruction that would require us to keep the
/// alloc_ref alive.
static bool canZapInstruction(SILInstruction *Inst, bool acceptRefCountInsts,
bool onlyAcceptTrivialStores) {
if (isa<SetDeallocatingInst>(Inst) || isa<FixLifetimeInst>(Inst))
return true;
// It is ok to eliminate various retains/releases. We are either removing
// everything or nothing.
if (isa<RefCountingInst>(Inst) ||
// dealloc_partial_ref invokes releases implicitly
isa<DeallocPartialRefInst>(Inst))
return acceptRefCountInsts;
if (isa<InjectEnumAddrInst>(Inst))
return true;
if (isa<KeyPathInst>(Inst))
return true;
// We know that the destructor has no side effects so we can remove the
// deallocation instruction too.
if (isa<DeallocationInst>(Inst) || isa<AllocationInst>(Inst))
return true;
// Much like deallocation, destroy addr is safe.
if (isa<DestroyAddrInst>(Inst))
return true;
// The only store instructions which is guaranteed to store a trivial value
// is an inject_enum_addr witout a payload (i.e. without init_enum_data_addr).
// There can also be a 'store [trivial]', but we don't handle that yet.
if (onlyAcceptTrivialStores)
return false;
// If we see a store here, we have already checked that we are storing into
// the pointer before we added it to the worklist, so we can skip it.
if (isa<StoreInst>(Inst))
return true;
// If Inst does not read or write to memory, have side effects, and is not a
// terminator, we can zap it.
if (!Inst->mayHaveSideEffects() && !Inst->mayReadFromMemory() &&
!isa<TermInst>(Inst))
return true;
// Otherwise we do not know how to handle this instruction. Be conservative
// and don't zap it.
return false;
}
/// Analyze the use graph of AllocRef for any uses that would prevent us from
/// zapping it completely.
static bool
hasUnremovableUsers(SILInstruction *AllocRef, UserList &Users,
bool acceptRefCountInsts, bool onlyAcceptTrivialStores) {
SmallVector<SILInstruction *, 16> Worklist;
Worklist.push_back(AllocRef);
LLVM_DEBUG(llvm::dbgs() << " Analyzing Use Graph.");
while (!Worklist.empty()) {
SILInstruction *I = Worklist.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << " Visiting: " << *I);
// Insert the instruction into our InvolvedInstructions set. If we have
// already seen it, then don't reprocess all of the uses.
if (!Users.insert(I)) {
LLVM_DEBUG(llvm::dbgs() << " Already seen skipping...\n");
continue;
}
// If we can't zap this instruction... bail...
if (!canZapInstruction(I, acceptRefCountInsts, onlyAcceptTrivialStores)) {
LLVM_DEBUG(llvm::dbgs() << " Found instruction we can't zap...\n");
return true;
}
// At this point, we can remove the instruction as long as all of its users
// can be removed as well. Scan its users and add them to the worklist for
// recursive processing.
for (auto result : I->getResults()) {
for (auto *Op : result->getUses()) {
auto *User = Op->getUser();
// Make sure that we are only storing into our users, not storing our
// users which would be an escape.
if (auto *SI = dyn_cast<StoreInst>(User))
if (Op->get() == SI->getSrc()) {
LLVM_DEBUG(llvm::dbgs() << " Found store of pointer. "
"Failure: "
<< *SI);
return true;
}
// Otherwise, add normal instructions to the worklist for processing.
Worklist.push_back(User);
}
}
}
return false;
}
//===----------------------------------------------------------------------===//
// NonTrivial DeadObject Elimination
//===----------------------------------------------------------------------===//
namespace {
/// Determine if an object is dead. Compute its original lifetime. Find the
/// lifetime endpoints reached by each store of a refcounted object into the
/// object.
///
/// TODO: Use this to remove nontrivial dead alloc_ref/alloc_stack, not just
/// dead arrays. We just need a slightly better destructor analysis to prove
/// that it only releases elements.
class DeadObjectAnalysis {
// Map each address projection of this object to a list of stores.
// Do not iterate over this map's entries.
using AddressToStoreMap =
llvm::DenseMap<IndexTrieNode*, llvm::SmallVector<StoreInst*, 4> >;
// The value of the object's address at the point of allocation.
SILValue NewAddrValue;
// Track all users that extend the lifetime of the object.
UserList AllUsers;
// Trie of stored locations.
std::unique_ptr<IndexTrieNode> AddressProjectionTrie;
// Track all stores of refcounted elements per address projection.
AddressToStoreMap StoredLocations;
// Are any uses behind a PointerToAddressInst?
bool SeenPtrToAddr;
public:
explicit DeadObjectAnalysis(SILValue V):
NewAddrValue(V), AddressProjectionTrie(nullptr), SeenPtrToAddr(false) {}
bool analyze();
ArrayRef<SILInstruction*> getAllUsers() const {
return ArrayRef<SILInstruction*>(AllUsers.begin(), AllUsers.end());
}
template<typename Visitor>
void visitStoreLocations(Visitor visitor) {
visitStoreLocations(visitor, AddressProjectionTrie.get());
}
private:
void addStore(StoreInst *Store, IndexTrieNode *AddressNode);
bool recursivelyCollectInteriorUses(ValueBase *DefInst,
IndexTrieNode *AddressNode,
bool IsInteriorAddress);
template<typename Visitor>
void visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode);
};
} // end anonymous namespace
// Record a store into this object.
void DeadObjectAnalysis::
addStore(StoreInst *Store, IndexTrieNode *AddressNode) {
if (Store->getSrc()->getType().isTrivial(*Store->getFunction()))
return;
// SSAUpdater cannot handle multiple defs in the same blocks. Therefore, we
// ensure that only one store per block is present in the StoredLocations.
auto &StoredLocs = StoredLocations[AddressNode];
for (auto &OtherSt : StoredLocs) {
// In case the object's address is stored in itself.
if (OtherSt == Store)
return;
if (OtherSt->getParent() == Store->getParent()) {
for (auto II = std::next(Store->getIterator()),
IE = Store->getParent()->end();
II != IE; ++II) {
if (&*II == OtherSt)
return; // Keep the other store.
}
// Replace OtherSt with this store.
OtherSt = Store;
return;
}
}
StoredLocations[AddressNode].push_back(Store);
}
// Collect instructions that either initialize or release any values at the
// object defined by defInst.
//
// Populates AllUsers, AddressProjectionTrie, and StoredLocations.
//
// If a use is visited that potentially causes defInst's address to
// escape, then return false without fully populating the data structures.
//
// `InteriorAddress` is true if the current address projection already includes
// a struct/ref/tuple element address. index_addr is only expected at the top
// level. The first non-index element address encountered pushes an "zero index"
// address node to represent the implicit index_addr #0. We do not support
// nested indexed data types in native SIL.
bool DeadObjectAnalysis::
recursivelyCollectInteriorUses(ValueBase *DefInst,
IndexTrieNode* AddressNode,
bool IsInteriorAddress) {
for (auto Op : DefInst->getUses()) {
auto User = Op->getUser();
// Lifetime endpoints that don't allow the address to escape.
if (isa<RefCountingInst>(User) ||
isa<DebugValueInst>(User)) {
AllUsers.insert(User);
continue;
}
// Initialization points.
if (auto *Store = dyn_cast<StoreInst>(User)) {
// Bail if this address is stored to another object.
if (Store->getDest() != DefInst) {
LLVM_DEBUG(llvm::dbgs() <<" Found an escaping store: " << *User);
return false;
}
IndexTrieNode *StoreAddrNode = AddressNode;
// Push an extra zero index node for a store to noninterior address.
if (!IsInteriorAddress)
StoreAddrNode = AddressNode->getChild(0);
addStore(Store, StoreAddrNode);
AllUsers.insert(User);
continue;
}
if (auto PTAI = dyn_cast<PointerToAddressInst>(User)) {
// Only one pointer-to-address is allowed for safety.
if (SeenPtrToAddr)
return false;
SeenPtrToAddr = true;
if (!recursivelyCollectInteriorUses(PTAI, AddressNode, IsInteriorAddress))
return false;
continue;
}
// Recursively follow projections.
if (auto ProjInst = dyn_cast<SingleValueInstruction>(User)) {
ProjectionIndex PI(ProjInst);
if (PI.isValid()) {
IndexTrieNode *ProjAddrNode = AddressNode;
bool ProjInteriorAddr = IsInteriorAddress;
if (Projection::isAddressProjection(ProjInst)) {
if (isa<IndexAddrInst>(ProjInst)) {
// Don't support indexing within an interior address.
if (IsInteriorAddress)
return false;
}
else if (!IsInteriorAddress) {
// Push an extra zero index node for the first interior address.
ProjAddrNode = AddressNode->getChild(0);
ProjInteriorAddr = true;
}
}
else if (IsInteriorAddress) {
// Don't expect to extract values once we've taken an address.
return false;
}
if (!recursivelyCollectInteriorUses(ProjInst,
ProjAddrNode->getChild(PI.Index),
ProjInteriorAddr)) {
return false;
}
continue;
}
}
// Otherwise bail.
LLVM_DEBUG(llvm::dbgs() << " Found an escaping use: " << *User);
return false;
}
return true;
}
// Track the lifetime, release points, and released values referenced by a
// newly allocated object.
bool DeadObjectAnalysis::analyze() {
LLVM_DEBUG(llvm::dbgs() << " Analyzing nontrivial dead object: "
<< NewAddrValue);
// Populate AllValues, AddressProjectionTrie, and StoredLocations.
AddressProjectionTrie.reset(new IndexTrieNode());
if (!recursivelyCollectInteriorUses(NewAddrValue,
AddressProjectionTrie.get(), false)) {
return false;
}
// If all stores are leaves in the AddressProjectionTrie, then we can analyze
// the stores that reach the end of the object lifetime. Otherwise bail.
// This iteration order is nondeterministic but has no impact.
for (auto &AddressToStoresPair : StoredLocations) {
IndexTrieNode *Location = AddressToStoresPair.first;
if (!Location->isLeaf())
return false;
}
return true;
}
template<typename Visitor>
void DeadObjectAnalysis::
visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode) {
if (AddressNode->isLeaf()) {
auto LocI = StoredLocations.find(AddressNode);
if (LocI != StoredLocations.end())
visitor(LocI->second);
return;
}
for (auto *SubAddressNode : AddressNode->getChildren())
visitStoreLocations(visitor, SubAddressNode);
}
// At each release point, release the reaching values that have been stored to
// this address.
//
// The caller has already determined that all Stores are to the same element
// within an otherwise dead object.
static void insertReleases(ArrayRef<StoreInst*> Stores,
ArrayRef<SILInstruction*> ReleasePoints,
SILSSAUpdater &SSAUp) {
assert(!Stores.empty());
SILValue StVal = Stores.front()->getSrc();
SSAUp.Initialize(StVal->getType());
for (auto *Store : Stores)
SSAUp.AddAvailableValue(Store->getParent(), Store->getSrc());
SILLocation Loc = Stores[0]->getLoc();
for (auto *RelPoint : ReleasePoints) {
SILBuilder B(RelPoint);
// This does not use the SSAUpdater::RewriteUse API because it does not do
// the right thing for local uses. We have already ensured a single store
// per block, and all release points occur after all stores. Therefore we
// can simply ask SSAUpdater for the reaching store.
SILValue RelVal = SSAUp.GetValueAtEndOfBlock(RelPoint->getParent());
if (StVal->getType().isReferenceCounted(RelPoint->getModule()))
B.createStrongRelease(Loc, RelVal, B.getDefaultAtomicity());
else
B.createReleaseValue(Loc, RelVal, B.getDefaultAtomicity());
}
}
// Attempt to remove the array allocated at NewAddrValue and release its
// refcounted elements.
//
// This is tightly coupled with the implementation of array.uninitialized.
// The call to allocate an uninitialized array returns two values:
// (Array<E> ArrayBase, UnsafeMutable<E> ArrayElementStorage)
//
// TODO: This relies on the lowest level array.uninitialized not being
// inlined. To do better we could either run this pass before semantic inlining,
// or we could also handle calls to array.init.
static bool removeAndReleaseArray(SingleValueInstruction *NewArrayValue,
DeadEndBlocks &DEBlocks) {
TupleExtractInst *ArrayDef = nullptr;
TupleExtractInst *StorageAddress = nullptr;
for (auto *Op : NewArrayValue->getUses()) {
auto *TupleElt = dyn_cast<TupleExtractInst>(Op->getUser());
if (!TupleElt)
return false;
if (TupleElt->getFieldNo() == 0 && !ArrayDef) {
ArrayDef = TupleElt;
} else if (TupleElt->getFieldNo() == 1 && !StorageAddress) {
StorageAddress = TupleElt;
} else {
return false;
}
}
if (!ArrayDef)
return false; // No Array object to delete.
assert(!ArrayDef->getType().isTrivial(*ArrayDef->getFunction()) &&
"Array initialization should produce the proper tuple type.");
// Analyze the array object uses.
DeadObjectAnalysis DeadArray(ArrayDef);
if (!DeadArray.analyze())
return false;
// Require all stores to be into the array storage not the array object,
// otherwise bail.
bool HasStores = false;
DeadArray.visitStoreLocations([&](ArrayRef<StoreInst*>){ HasStores = true; });
if (HasStores)
return false;
// Remove references to empty arrays.
if (!StorageAddress) {
removeInstructions(DeadArray.getAllUsers());
return true;
}
assert(StorageAddress->getType().isTrivial(*ArrayDef->getFunction()) &&
"Array initialization should produce the proper tuple type.");
// Analyze the array storage uses.
DeadObjectAnalysis DeadStorage(StorageAddress);
if (!DeadStorage.analyze())
return false;
// Find array object lifetime.
ValueLifetimeAnalysis VLA(NewArrayValue, DeadArray.getAllUsers());
// Check that all storage users are in the Array's live blocks.
for (auto *User : DeadStorage.getAllUsers()) {
if (!VLA.isWithinLifetime(User))
return false;
}
// For each store location, insert releases.
SILSSAUpdater SSAUp;
ValueLifetimeAnalysis::Frontier ArrayFrontier;
if (!VLA.computeFrontier(ArrayFrontier,
ValueLifetimeAnalysis::UsersMustPostDomDef,
&DEBlocks)) {
// In theory the allocated object must be released on all paths in which
// some object initialization occurs. If not (for some reason) we bail.
return false;
}
DeadStorage.visitStoreLocations([&] (ArrayRef<StoreInst*> Stores) {
insertReleases(Stores, ArrayFrontier, SSAUp);
});
// Delete all uses of the dead array and its storage address.
removeInstructions(DeadArray.getAllUsers());
removeInstructions(DeadStorage.getAllUsers());
return true;
}
//===----------------------------------------------------------------------===//
// Function Processing
//===----------------------------------------------------------------------===//
/// Does this instruction perform object allocation with no other observable
/// side effect?
static bool isAllocatingApply(SILInstruction *Inst) {
ArraySemanticsCall ArrayAlloc(Inst);
return ArrayAlloc.getKind() == ArrayCallKind::kArrayUninitialized;
}
namespace {
class DeadObjectElimination : public SILFunctionTransform {
llvm::DenseMap<SILType, bool> DestructorAnalysisCache;
llvm::SmallVector<SILInstruction*, 16> Allocations;
void collectAllocations(SILFunction &Fn) {
for (auto &BB : Fn) {
for (auto &II : BB) {
if (isa<AllocationInst>(&II) ||
isAllocatingApply(&II) ||
isa<KeyPathInst>(&II)) {
Allocations.push_back(&II);
}
}
}
}
bool processAllocRef(AllocRefInst *ARI);
bool processAllocStack(AllocStackInst *ASI);
bool processKeyPath(KeyPathInst *KPI);
bool processAllocBox(AllocBoxInst *ABI){ return false;}
bool processAllocApply(ApplyInst *AI, DeadEndBlocks &DEBlocks);
bool processFunction(SILFunction &Fn) {
DeadEndBlocks DEBlocks(&Fn);
Allocations.clear();
DestructorAnalysisCache.clear();
bool Changed = false;
collectAllocations(Fn);
for (auto *II : Allocations) {
if (auto *A = dyn_cast<AllocRefInst>(II))
Changed |= processAllocRef(A);
else if (auto *A = dyn_cast<AllocStackInst>(II))
Changed |= processAllocStack(A);
else if (auto *KPI = dyn_cast<KeyPathInst>(II))
Changed |= processKeyPath(KPI);
else if (auto *A = dyn_cast<AllocBoxInst>(II))
Changed |= processAllocBox(A);
else if (auto *A = dyn_cast<ApplyInst>(II))
Changed |= processAllocApply(A, DEBlocks);
}
return Changed;
}
void run() override {
// FIXME: We should support ownership eventually.
if (getFunction()->hasOwnership())
return;
if (processFunction(*getFunction())) {
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
};
} // end anonymous namespace
bool DeadObjectElimination::processAllocRef(AllocRefInst *ARI) {
// Ok, we have an alloc_ref. Check the cache to see if we have already
// computed the destructor behavior for its SILType.
bool HasSideEffects;
SILType Type = ARI->getType();
auto CacheSearchResult = DestructorAnalysisCache.find(Type);
if (CacheSearchResult != DestructorAnalysisCache.end()) {
// Ok we found a value in the cache.
HasSideEffects = CacheSearchResult->second;
} else {
// We did not find a value in the cache for our destructor. Analyze the
// destructor to make sure it has no side effects. For now this only
// supports alloc_ref of classes so any alloc_ref with a reference type
// that is not a class this will return false for. Once we have analyzed
// it, set Behavior to that value and insert the value into the Cache.
//
// TODO: We should be able to handle destructors that do nothing but release
// members of the object.
HasSideEffects = doesDestructorHaveSideEffects(ARI);
DestructorAnalysisCache[Type] = HasSideEffects;
}
// Our destructor has no side effects, so if we can prove that no loads
// escape, then we can completely remove the use graph of this alloc_ref.
UserList UsersToRemove;
if (hasUnremovableUsers(ARI, UsersToRemove,
/*acceptRefCountInsts=*/ !HasSideEffects,
/*onlyAcceptTrivialStores*/false)) {
LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
return false;
}
// Remove the AllocRef and all of its users.
removeInstructions(
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating alloc_ref.\n");
++DeadAllocRefEliminated;
return true;
}
bool DeadObjectElimination::processAllocStack(AllocStackInst *ASI) {
// Trivial types don't have destructors.
bool isTrivialType = ASI->getElementType().isTrivial(*ASI->getFunction());
UserList UsersToRemove;
if (hasUnremovableUsers(ASI, UsersToRemove, /*acceptRefCountInsts=*/ true,
/*onlyAcceptTrivialStores*/!isTrivialType)) {
LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
return false;
}
// Remove the AllocRef and all of its users.
removeInstructions(
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating alloc_stack.\n");
++DeadAllocStackEliminated;
return true;
}
bool DeadObjectElimination::processKeyPath(KeyPathInst *KPI) {
UserList UsersToRemove;
if (hasUnremovableUsers(KPI, UsersToRemove, /*acceptRefCountInsts=*/ true,
/*onlyAcceptTrivialStores*/ false)) {
LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
return false;
}
// For simplicity just bail if the keypath has a non-trivial operands.
// TODO: don't bail but insert compensating destroys for such operands.
for (const Operand &Op : KPI->getAllOperands()) {
if (!Op.get()->getType().isTrivial(*KPI->getFunction()))
return false;
}
// Remove the keypath and all of its users.
removeInstructions(
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating keypath.\n");
++DeadKeyPathEliminated;
return true;
}
/// If AI is the version of an initializer where we pass in either an apply or
/// an alloc_ref to initialize in place, validate that we are able to continue
/// optimizing and return To
static bool getDeadInstsAfterInitializerRemoved(
ApplyInst *AI, llvm::SmallVectorImpl<SILInstruction *> &ToDestroy) {
assert(ToDestroy.empty() && "We assume that ToDestroy is empty, so on "
"failure we can clear without worrying about the "
"caller accumulating and thus our eliminating "
"passed in state.");
SILValue Arg0 = AI->getArgument(0);
if (Arg0->getType().isExistentialType()) {
// This is a version of the initializer which receives a pre-allocated
// buffer as first argument. To completely eliminate the allocation, we must
// destroy the extra allocations as well as the initializer,
if (auto *Result = dyn_cast<ApplyInst>(Arg0)) {
ToDestroy.emplace_back(Result);
return true;
}
return false;
}
if (auto *ARI = dyn_cast<AllocRefInst>(Arg0)) {
if (all_of(ARI->getUses(), [&](Operand *Op) -> bool {
if (Op->getUser() == AI)
return true;
if (auto *SRI = dyn_cast<StrongReleaseInst>(Op->getUser())) {
ToDestroy.emplace_back(SRI);
return true;
}
return false;
})) {
return true;
}
}
// We may have added elements to the array before we failed. To avoid such a
// problem, we clear the out array here. We assert at the beginning that the
// out array is empty, so this is safe.
ToDestroy.clear();
return true;
}
bool DeadObjectElimination::processAllocApply(ApplyInst *AI,
DeadEndBlocks &DEBlocks) {
// Currently only handle array.uninitialized
if (ArraySemanticsCall(AI).getKind() != ArrayCallKind::kArrayUninitialized)
return false;
llvm::SmallVector<SILInstruction *, 8> instsDeadAfterInitializerRemoved;
if (!getDeadInstsAfterInitializerRemoved(AI,
instsDeadAfterInitializerRemoved))
return false;
if (!removeAndReleaseArray(AI, DEBlocks))
return false;
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating apply allocate(...).\n");
eraseUsesOfInstruction(AI);
assert(AI->use_empty() && "All users should have been removed.");
recursivelyDeleteTriviallyDeadInstructions(AI, true);
if (instsDeadAfterInitializerRemoved.size()) {
recursivelyDeleteTriviallyDeadInstructions(instsDeadAfterInitializerRemoved,
true);
}
++DeadAllocApplyEliminated;
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
SILTransform *swift::createDeadObjectElimination() {
return new DeadObjectElimination();
}