forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSILSROA.cpp
353 lines (300 loc) · 11.7 KB
/
SILSROA.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
//===--- SILSROA.cpp - Scalar Replacement of Aggregates ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Change aggregate values into scalar values. Currently it takes every
// allocation and chops them up into their smallest non-captured pieces.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-sroa"
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Range.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include <type_traits>
using namespace swift;
STATISTIC(NumEscapingAllocas, "Number of aggregate allocas not chopped up "
"due to uses.");
STATISTIC(NumChoppedAllocas, "Number of chopped up aggregate allocas.");
STATISTIC(NumUnhandledAllocas, "Number of non struct, tuple allocas.");
namespace {
class SROAMemoryUseAnalyzer {
// The allocation we are analyzing.
AllocStackInst *AI;
// Loads from AI.
llvm::SmallVector<LoadInst *, 4> Loads;
// Stores to AI.
llvm::SmallVector<StoreInst *, 4> Stores;
// Instructions which extract from aggregates.
llvm::SmallVector<SingleValueInstruction *, 4> ExtractInsts;
// TupleType if we are visiting a tuple.
TupleType *TT = nullptr;
// StructDecl if we are visiting a struct.
StructDecl *SD = nullptr;
public:
SROAMemoryUseAnalyzer(AllocStackInst *AI) : AI(AI) {
assert(AI && "AI should never be null here.");
}
bool analyze();
void chopUpAlloca(std::vector<AllocStackInst *> &Worklist);
private:
SILValue createAgg(SILBuilder &B, SILLocation Loc, SILType Ty,
ArrayRef<SILValue> Elements);
SILValue createAggProjection(SILBuilder &B, SILLocation Loc,
SILValue Operand, unsigned EltNo);
unsigned getEltNoForProjection(SILInstruction *Inst);
void createAllocas(llvm::SmallVector<AllocStackInst *, 4> &NewAllocations);
};
} // end anonymous namespace
SILValue
SROAMemoryUseAnalyzer::createAgg(SILBuilder &B, SILLocation Loc,
SILType Ty,
ArrayRef<SILValue> Elements) {
if (TT)
return B.createTuple(Loc, Ty, Elements);
assert(SD && "SD must not be null here since it or TT must be set to call"
" this method.");
return B.createStruct(Loc, Ty, Elements);
}
SILValue
SROAMemoryUseAnalyzer::createAggProjection(SILBuilder &B, SILLocation Loc,
SILValue Operand,
unsigned EltNo) {
if (TT)
return B.createTupleExtract(Loc, Operand, EltNo);
assert(SD && "SD should not be null since either it or TT must be set at "
"this point.");
auto Properties = SD->getStoredProperties();
unsigned Counter = 0;
for (auto *D : Properties)
if (Counter++ == EltNo)
return B.createStructExtract(Loc, Operand, D);
llvm_unreachable("Unknown field.");
}
unsigned SROAMemoryUseAnalyzer::getEltNoForProjection(SILInstruction *Inst) {
if (TT)
return cast<TupleElementAddrInst>(Inst)->getFieldNo();
assert(SD && "SD should not be null since either it or TT must be set at "
"this point.");
StructElementAddrInst *SEA = cast<StructElementAddrInst>(Inst);
VarDecl *Field = SEA->getField();
unsigned EltNo = 0;
for (auto *D : SD->getStoredProperties()) {
if (D == Field)
return EltNo;
++EltNo;
}
llvm_unreachable("Unknown field.");
}
bool SROAMemoryUseAnalyzer::analyze() {
// We only know how to split structs and tuples... So if we have a scalar or a
// different sort of aggregate, bail.
SILType Type = AI->getType();
TT = Type.getAs<TupleType>();
SD = Type.getStructOrBoundGenericStruct();
bool HasUnrefField = AI->getElementType().aggregateHasUnreferenceableStorage();
// Check that the allocated type is a struct or a tuple and that there are
// no unreferenced fields.
if (HasUnrefField || (!TT && !SD)) {
++NumUnhandledAllocas;
return false;
}
bool hasBenefit = false;
// Go through uses of the memory allocation of AI...
for (auto *Operand : getNonDebugUses(SILValue(AI))) {
SILInstruction *User = Operand->getUser();
LLVM_DEBUG(llvm::dbgs() << " Visiting use: " << *User);
// If we store the alloca pointer, we cannot analyze its uses so bail...
// It is ok if we store into the alloca pointer though.
if (auto *SI = dyn_cast<StoreInst>(User)) {
if (SI->getDest() == AI) {
LLVM_DEBUG(llvm::dbgs() << " Found a store into the "
"projection.\n");
Stores.push_back(SI);
SILValue Src = SI->getSrc();
if (isa<StructInst>(Src) || isa<TupleInst>(Src))
hasBenefit = true;
continue;
} else {
LLVM_DEBUG(llvm::dbgs() << " Found a store of the "
"projection pointer. Escapes!.\n");
++NumEscapingAllocas;
return false;
}
}
// If the use is a load, keep track of it for splitting later...
if (auto *LI = dyn_cast<LoadInst>(User)) {
LLVM_DEBUG(llvm::dbgs() << " Found a load of the projection.\n");
Loads.push_back(LI);
for (auto useIter = LI->use_begin(), End = LI->use_end();
!hasBenefit && useIter != End; useIter++) {
hasBenefit = (isa<StructExtractInst>(useIter->get()) ||
isa<TupleExtractInst>(useIter->get()));
}
continue;
}
// If the use is a struct_element_addr, add it to the worklist so we check
// if it or one of its descendants escape.
if (auto *ASI = dyn_cast<StructElementAddrInst>(User)) {
LLVM_DEBUG(llvm::dbgs() << " Found a struct subprojection!\n");
ExtractInsts.push_back(ASI);
hasBenefit = true;
continue;
}
// If the use is a tuple_element_addr, add it to the worklist so we check
// if it or one of its descendants escape.
if (auto *TSI = dyn_cast<TupleElementAddrInst>(User)) {
LLVM_DEBUG(llvm::dbgs() << " Found a tuple subprojection!\n");
ExtractInsts.push_back(TSI);
hasBenefit = true;
continue;
}
if (isa<DeallocStackInst>(User)) {
// We can ignore the dealloc_stack.
continue;
}
// Otherwise we do not understand this instruction, so bail.
LLVM_DEBUG(llvm::dbgs() <<" Found unknown user, pointer escapes!\n");
++NumEscapingAllocas;
return false;
}
// Analysis was successful. We can break up this allocation!
++NumChoppedAllocas;
return hasBenefit;
}
void
SROAMemoryUseAnalyzer::
createAllocas(llvm::SmallVector<AllocStackInst *, 4> &NewAllocations) {
SILBuilderWithScope B(AI);
SILType Type = AI->getType().getObjectType();
if (TT) {
for (unsigned EltNo : indices(TT->getElementTypes())) {
SILType EltTy = Type.getTupleElementType(EltNo);
NewAllocations.push_back(B.createAllocStack(AI->getLoc(), EltTy));
}
} else {
assert(SD && "SD should not be null since either it or TT must be set at "
"this point.");
SILModule &M = AI->getModule();
for (auto *D : SD->getStoredProperties())
NewAllocations.push_back(B.createAllocStack(AI->getLoc(),
Type.getFieldType(D, M)));
}
}
void SROAMemoryUseAnalyzer::chopUpAlloca(std::vector<AllocStackInst *> &Worklist) {
// Create allocations for this instruction.
llvm::SmallVector<AllocStackInst *, 4> NewAllocations;
createAllocas(NewAllocations);
// Add the new allocations to the worklist for recursive processing.
//
// TODO: Change this into an assert. For some reason I am running into compile
// issues when I try it now.
for (auto *AI : NewAllocations)
Worklist.push_back(AI);
// Change any aggregate loads into field loads + aggregate structure.
for (auto *LI : Loads) {
SILBuilderWithScope B(LI);
llvm::SmallVector<SILValue, 4> Elements;
for (auto *NewAI : NewAllocations)
Elements.push_back(B.createLoad(LI->getLoc(), NewAI,
LoadOwnershipQualifier::Unqualified));
SILValue Agg = createAgg(B, LI->getLoc(), LI->getType().getObjectType(),
Elements);
LI->replaceAllUsesWith(Agg);
LI->eraseFromParent();
}
// Change any aggregate stores into extracts + field stores.
for (auto *SI : Stores) {
SILBuilderWithScope B(SI);
for (unsigned EltNo : indices(NewAllocations))
B.createStore(SI->getLoc(),
createAggProjection(B, SI->getLoc(), SI->getSrc(), EltNo),
NewAllocations[EltNo],
StoreOwnershipQualifier::Unqualified);
SI->eraseFromParent();
}
// Forward any field extracts to the new allocation.
for (auto *Ext : ExtractInsts) {
AllocStackInst *NewValue = NewAllocations[getEltNoForProjection(Ext)];
Ext->replaceAllUsesWith(NewValue);
Ext->eraseFromParent();
}
// Find all dealloc instructions for AI and then chop them up.
llvm::SmallVector<DeallocStackInst *, 4> ToRemove;
for (auto *Operand : getNonDebugUses(SILValue(AI))) {
SILInstruction *User = Operand->getUser();
SILBuilderWithScope B(User);
// If the use is a DSI, add it to our memory analysis so that if we can chop
// up allocas, we also chop up the relevant dealloc stack insts.
if (auto *DSI = dyn_cast<DeallocStackInst>(User)) {
LLVM_DEBUG(llvm::dbgs() << " Found DeallocStackInst!\n");
// Create the allocations in reverse order.
for (auto *NewAI : swift::reversed(NewAllocations))
B.createDeallocStack(DSI->getLoc(), SILValue(NewAI));
ToRemove.push_back(DSI);
}
}
// Remove the old DeallocStackInst instructions.
for (auto *DSI : ToRemove) {
DSI->eraseFromParent();
}
eraseFromParentWithDebugInsts(AI);
}
static bool runSROAOnFunction(SILFunction &Fn) {
std::vector<AllocStackInst *> Worklist;
bool Changed = false;
// For each basic block BB in Fn...
for (auto &BB : Fn)
// For each instruction in BB...
for (auto &I : BB)
// If the instruction is an alloc stack inst, add it to the worklist.
if (auto *AI = dyn_cast<AllocStackInst>(&I))
if (shouldExpand(Fn.getModule(), AI->getElementType()))
Worklist.push_back(AI);
while (!Worklist.empty()) {
AllocStackInst *AI = Worklist.back();
Worklist.pop_back();
SROAMemoryUseAnalyzer Analyzer(AI);
if (!Analyzer.analyze())
continue;
Changed = true;
Analyzer.chopUpAlloca(Worklist);
}
return Changed;
}
namespace {
class SILSROA : public SILFunctionTransform {
/// The entry point to the transformation.
void run() override {
SILFunction *F = getFunction();
// FIXME: We should be able to handle ownership.
if (F->hasOwnership())
return;
LLVM_DEBUG(llvm::dbgs() << "***** SROA on function: " << F->getName()
<< " *****\n");
if (runSROAOnFunction(*F))
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
};
} // end anonymous namespace
SILTransform *swift::createSROA() {
return new SILSROA();
}