forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCFG.cpp
743 lines (640 loc) · 27.2 KB
/
CFG.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
//===--- CFG.cpp - Utilities for SIL CFG transformations ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/LoopInfo.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SILOptimizer/Utils/CFG.h"
#include "swift/SILOptimizer/Utils/Local.h"
using namespace swift;
/// Adds a new argument to an edge between a branch and a destination
/// block.
///
/// \param Branch The terminator to add the argument to.
/// \param Dest The destination block of the edge.
/// \param Val The value to the arguments of the branch.
/// \return The created branch. The old branch is deleted.
/// The argument is appended at the end of the argument tuple.
TermInst *swift::addNewEdgeValueToBranch(TermInst *Branch, SILBasicBlock *Dest,
SILValue Val) {
SILBuilderWithScope Builder(Branch);
TermInst *NewBr = nullptr;
if (auto *CBI = dyn_cast<CondBranchInst>(Branch)) {
SmallVector<SILValue, 8> TrueArgs;
SmallVector<SILValue, 8> FalseArgs;
for (auto A : CBI->getTrueArgs())
TrueArgs.push_back(A);
for (auto A : CBI->getFalseArgs())
FalseArgs.push_back(A);
if (Dest == CBI->getTrueBB()) {
TrueArgs.push_back(Val);
assert(TrueArgs.size() == Dest->getNumArguments());
}
if (Dest == CBI->getFalseBB()) {
FalseArgs.push_back(Val);
assert(FalseArgs.size() == Dest->getNumArguments());
}
NewBr = Builder.createCondBranch(
CBI->getLoc(), CBI->getCondition(), CBI->getTrueBB(), TrueArgs,
CBI->getFalseBB(), FalseArgs, CBI->getTrueBBCount(),
CBI->getFalseBBCount());
} else if (auto *BI = dyn_cast<BranchInst>(Branch)) {
SmallVector<SILValue, 8> Args;
for (auto A : BI->getArgs())
Args.push_back(A);
Args.push_back(Val);
assert(Args.size() == Dest->getNumArguments());
NewBr = Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args);
} else {
// At the moment we can only add arguments to br and cond_br.
llvm_unreachable("Can't add argument to terminator");
}
Branch->dropAllReferences();
Branch->eraseFromParent();
return NewBr;
}
static void
deleteTriviallyDeadOperandsOfDeadArgument(MutableArrayRef<Operand> termOperands,
unsigned deadArgIndex) {
Operand &op = termOperands[deadArgIndex];
auto *i = op.get()->getDefiningInstruction();
if (!i)
return;
op.set(SILUndef::get(op.get()->getType(), *i->getFunction()));
recursivelyDeleteTriviallyDeadInstructions(i);
}
// Our implementation assumes that our caller is attempting to remove a dead
// SILPhiArgument from a SILBasicBlock and has already RAUWed the argument.
TermInst *swift::deleteEdgeValue(TermInst *branch, SILBasicBlock *destBlock,
size_t argIndex) {
if (auto *cbi = dyn_cast<CondBranchInst>(branch)) {
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
llvm::copy(cbi->getTrueArgs(), std::back_inserter(trueArgs));
llvm::copy(cbi->getFalseArgs(), std::back_inserter(falseArgs));
if (destBlock == cbi->getTrueBB()) {
deleteTriviallyDeadOperandsOfDeadArgument(cbi->getTrueOperands(), argIndex);
trueArgs.erase(trueArgs.begin() + argIndex);
}
if (destBlock == cbi->getFalseBB()) {
deleteTriviallyDeadOperandsOfDeadArgument(cbi->getFalseOperands(), argIndex);
falseArgs.erase(falseArgs.begin() + argIndex);
}
SILBuilderWithScope builder(cbi);
auto *result = builder.createCondBranch(cbi->getLoc(), cbi->getCondition(),
cbi->getTrueBB(), trueArgs, cbi->getFalseBB(),
falseArgs, cbi->getTrueBBCount(),
cbi->getFalseBBCount());
branch->eraseFromParent();
return result;
}
if (auto *bi = dyn_cast<BranchInst>(branch)) {
SmallVector<SILValue, 8> args;
llvm::copy(bi->getArgs(), std::back_inserter(args));
deleteTriviallyDeadOperandsOfDeadArgument(bi->getAllOperands(), argIndex);
args.erase(args.begin() + argIndex);
auto *result = SILBuilderWithScope(bi).createBranch(bi->getLoc(), bi->getDestBB(), args);
branch->eraseFromParent();
return result;
}
llvm_unreachable("unsupported terminator");
}
void swift::erasePhiArgument(SILBasicBlock *block, unsigned argIndex) {
assert(block->getArgument(argIndex)->isPhiArgument() &&
"Only should be used on phi arguments");
block->eraseArgument(argIndex);
// Determine the set of predecessors in case any predecessor has
// two edges to this block (e.g. a conditional branch where both
// sides reach this block).
//
// NOTE: This needs to be a SmallSetVector since we need both uniqueness /and/
// insertion order. Otherwise non-determinism can result.
SmallSetVector<SILBasicBlock *, 8> predBlocks;
for (auto *pred : block->getPredecessorBlocks())
predBlocks.insert(pred);
for (auto *pred : predBlocks)
deleteEdgeValue(pred->getTerminator(), block, argIndex);
}
/// Changes the edge value between a branch and destination basic block
/// at the specified index. Changes all edges from \p Branch to \p Dest to carry
/// the value.
///
/// \param Branch The branch to modify.
/// \param Dest The destination of the edge.
/// \param Idx The index of the argument to modify.
/// \param Val The new value to use.
/// \return The new branch. Deletes the old one.
/// Changes the edge value between a branch and destination basic block at the
/// specified index.
TermInst *swift::changeEdgeValue(TermInst *Branch, SILBasicBlock *Dest,
size_t Idx, SILValue Val) {
SILBuilderWithScope Builder(Branch);
if (auto *CBI = dyn_cast<CondBranchInst>(Branch)) {
SmallVector<SILValue, 8> TrueArgs;
SmallVector<SILValue, 8> FalseArgs;
OperandValueArrayRef OldTrueArgs = CBI->getTrueArgs();
bool BranchOnTrue = CBI->getTrueBB() == Dest;
assert((!BranchOnTrue || Idx < OldTrueArgs.size()) && "Not enough edges");
// Copy the edge values overwriting the edge at Idx.
for (unsigned i = 0, e = OldTrueArgs.size(); i != e; ++i) {
if (BranchOnTrue && Idx == i)
TrueArgs.push_back(Val);
else
TrueArgs.push_back(OldTrueArgs[i]);
}
assert(TrueArgs.size() == CBI->getTrueBB()->getNumArguments() &&
"Destination block's number of arguments must match");
OperandValueArrayRef OldFalseArgs = CBI->getFalseArgs();
bool BranchOnFalse = CBI->getFalseBB() == Dest;
assert((!BranchOnFalse || Idx < OldFalseArgs.size()) && "Not enough edges");
// Copy the edge values overwriting the edge at Idx.
for (unsigned i = 0, e = OldFalseArgs.size(); i != e; ++i) {
if (BranchOnFalse && Idx == i)
FalseArgs.push_back(Val);
else
FalseArgs.push_back(OldFalseArgs[i]);
}
assert(FalseArgs.size() == CBI->getFalseBB()->getNumArguments() &&
"Destination block's number of arguments must match");
CBI = Builder.createCondBranch(
CBI->getLoc(), CBI->getCondition(), CBI->getTrueBB(), TrueArgs,
CBI->getFalseBB(), FalseArgs, CBI->getTrueBBCount(),
CBI->getFalseBBCount());
Branch->dropAllReferences();
Branch->eraseFromParent();
return CBI;
}
if (auto *BI = dyn_cast<BranchInst>(Branch)) {
SmallVector<SILValue, 8> Args;
assert(Idx < BI->getNumArgs() && "Not enough edges");
OperandValueArrayRef OldArgs = BI->getArgs();
// Copy the edge values overwriting the edge at Idx.
for (unsigned i = 0, e = OldArgs.size(); i != e; ++i) {
if (Idx == i)
Args.push_back(Val);
else
Args.push_back(OldArgs[i]);
}
assert(Args.size() == Dest->getNumArguments());
BI = Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args);
Branch->dropAllReferences();
Branch->eraseFromParent();
return BI;
}
llvm_unreachable("Unhandled terminator leading to merge block");
}
template <class SwitchEnumTy, class SwitchEnumCaseTy>
SILBasicBlock *replaceSwitchDest(SwitchEnumTy *S,
SmallVectorImpl<SwitchEnumCaseTy> &Cases,
unsigned EdgeIdx, SILBasicBlock *NewDest) {
auto *DefaultBB = S->hasDefault() ? S->getDefaultBB() : nullptr;
for (unsigned i = 0, e = S->getNumCases(); i != e; ++i)
if (EdgeIdx != i)
Cases.push_back(S->getCase(i));
else
Cases.push_back(std::make_pair(S->getCase(i).first, NewDest));
if (EdgeIdx == S->getNumCases())
DefaultBB = NewDest;
return DefaultBB;
}
template <class SwitchEnumTy, class SwitchEnumCaseTy>
SILBasicBlock *replaceSwitchDest(SwitchEnumTy *S,
SmallVectorImpl<SwitchEnumCaseTy> &Cases,
SILBasicBlock *OldDest, SILBasicBlock *NewDest) {
auto *DefaultBB = S->hasDefault() ? S->getDefaultBB() : nullptr;
for (unsigned i = 0, e = S->getNumCases(); i != e; ++i)
if (S->getCase(i).second != OldDest)
Cases.push_back(S->getCase(i));
else
Cases.push_back(std::make_pair(S->getCase(i).first, NewDest));
if (OldDest == DefaultBB)
DefaultBB = NewDest;
return DefaultBB;
}
/// Replace a branch target.
///
/// \param T The terminating instruction to modify.
/// \param OldDest The successor block that will be replaced.
/// \param NewDest The new target block.
/// \param PreserveArgs If set, preserve arguments on the replaced edge.
void swift::replaceBranchTarget(TermInst *T, SILBasicBlock *OldDest,
SILBasicBlock *NewDest, bool PreserveArgs) {
SILBuilderWithScope B(T);
switch (T->getTermKind()) {
// Only Branch and CondBranch may have arguments.
case TermKind::BranchInst: {
auto Br = cast<BranchInst>(T);
assert(OldDest == Br->getDestBB() && "wrong branch target");
SmallVector<SILValue, 8> Args;
if (PreserveArgs) {
for (auto Arg : Br->getArgs())
Args.push_back(Arg);
}
B.createBranch(T->getLoc(), NewDest, Args);
Br->dropAllReferences();
Br->eraseFromParent();
return;
}
case TermKind::CondBranchInst: {
auto CondBr = cast<CondBranchInst>(T);
SmallVector<SILValue, 8> TrueArgs;
if (OldDest == CondBr->getFalseBB() || PreserveArgs) {
for (auto Arg : CondBr->getTrueArgs())
TrueArgs.push_back(Arg);
}
SmallVector<SILValue, 8> FalseArgs;
if (OldDest == CondBr->getTrueBB() || PreserveArgs) {
for (auto Arg : CondBr->getFalseArgs())
FalseArgs.push_back(Arg);
}
SILBasicBlock *TrueDest = CondBr->getTrueBB();
SILBasicBlock *FalseDest = CondBr->getFalseBB();
if (OldDest == CondBr->getTrueBB()) {
TrueDest = NewDest;
} else {
assert(OldDest == CondBr->getFalseBB() && "wrong cond_br target");
FalseDest = NewDest;
}
B.createCondBranch(CondBr->getLoc(), CondBr->getCondition(), TrueDest,
TrueArgs, FalseDest, FalseArgs, CondBr->getTrueBBCount(),
CondBr->getFalseBBCount());
CondBr->dropAllReferences();
CondBr->eraseFromParent();
return;
}
case TermKind::SwitchValueInst: {
auto SII = cast<SwitchValueInst>(T);
SmallVector<std::pair<SILValue, SILBasicBlock *>, 8> Cases;
auto *DefaultBB = replaceSwitchDest(SII, Cases, OldDest, NewDest);
B.createSwitchValue(SII->getLoc(), SII->getOperand(), DefaultBB, Cases);
SII->eraseFromParent();
return;
}
case TermKind::SwitchEnumInst: {
auto SEI = cast<SwitchEnumInst>(T);
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 8> Cases;
auto *DefaultBB = replaceSwitchDest(SEI, Cases, OldDest, NewDest);
B.createSwitchEnum(SEI->getLoc(), SEI->getOperand(), DefaultBB, Cases);
SEI->eraseFromParent();
return;
}
case TermKind::SwitchEnumAddrInst: {
auto SEI = cast<SwitchEnumAddrInst>(T);
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 8> Cases;
auto *DefaultBB = replaceSwitchDest(SEI, Cases, OldDest, NewDest);
B.createSwitchEnumAddr(SEI->getLoc(), SEI->getOperand(), DefaultBB, Cases);
SEI->eraseFromParent();
return;
}
case TermKind::DynamicMethodBranchInst: {
auto DMBI = cast<DynamicMethodBranchInst>(T);
assert(OldDest == DMBI->getHasMethodBB() || OldDest == DMBI->getNoMethodBB() && "Invalid edge index");
auto HasMethodBB = OldDest == DMBI->getHasMethodBB() ? NewDest : DMBI->getHasMethodBB();
auto NoMethodBB = OldDest == DMBI->getNoMethodBB() ? NewDest : DMBI->getNoMethodBB();
B.createDynamicMethodBranch(DMBI->getLoc(), DMBI->getOperand(),
DMBI->getMember(), HasMethodBB, NoMethodBB);
DMBI->eraseFromParent();
return;
}
case TermKind::CheckedCastBranchInst: {
auto CBI = cast<CheckedCastBranchInst>(T);
assert(OldDest == CBI->getSuccessBB() || OldDest == CBI->getFailureBB() && "Invalid edge index");
auto SuccessBB = OldDest == CBI->getSuccessBB() ? NewDest : CBI->getSuccessBB();
auto FailureBB = OldDest == CBI->getFailureBB() ? NewDest : CBI->getFailureBB();
B.createCheckedCastBranch(CBI->getLoc(), CBI->isExact(), CBI->getOperand(),
CBI->getCastType(), SuccessBB, FailureBB,
CBI->getTrueBBCount(), CBI->getFalseBBCount());
CBI->eraseFromParent();
return;
}
case TermKind::CheckedCastValueBranchInst: {
auto CBI = cast<CheckedCastValueBranchInst>(T);
assert(OldDest == CBI->getSuccessBB() ||
OldDest == CBI->getFailureBB() && "Invalid edge index");
auto SuccessBB =
OldDest == CBI->getSuccessBB() ? NewDest : CBI->getSuccessBB();
auto FailureBB =
OldDest == CBI->getFailureBB() ? NewDest : CBI->getFailureBB();
B.createCheckedCastValueBranch(CBI->getLoc(), CBI->getOperand(),
CBI->getCastType(), SuccessBB, FailureBB);
CBI->eraseFromParent();
return;
}
case TermKind::CheckedCastAddrBranchInst: {
auto CBI = cast<CheckedCastAddrBranchInst>(T);
assert(OldDest == CBI->getSuccessBB() || OldDest == CBI->getFailureBB() && "Invalid edge index");
auto SuccessBB = OldDest == CBI->getSuccessBB() ? NewDest : CBI->getSuccessBB();
auto FailureBB = OldDest == CBI->getFailureBB() ? NewDest : CBI->getFailureBB();
auto TrueCount = CBI->getTrueBBCount();
auto FalseCount = CBI->getFalseBBCount();
B.createCheckedCastAddrBranch(CBI->getLoc(), CBI->getConsumptionKind(),
CBI->getSrc(), CBI->getSourceType(),
CBI->getDest(), CBI->getTargetType(),
SuccessBB, FailureBB, TrueCount, FalseCount);
CBI->eraseFromParent();
return;
}
case TermKind::ReturnInst:
case TermKind::ThrowInst:
case TermKind::TryApplyInst:
case TermKind::UnreachableInst:
case TermKind::UnwindInst:
case TermKind::YieldInst:
llvm_unreachable("Branch target cannot be replaced for this terminator instruction!");
}
llvm_unreachable("Not yet implemented!");
}
/// Check if the edge from the terminator is critical.
bool swift::isCriticalEdge(TermInst *T, unsigned EdgeIdx) {
assert(T->getSuccessors().size() > EdgeIdx && "Not enough successors");
auto SrcSuccs = T->getSuccessors();
if (SrcSuccs.size() <= 1 &&
// Also consider non-branch instructions with a single successor for
// critical edges, for example: a switch_enum of a single-case enum.
(isa<BranchInst>(T) || isa<CondBranchInst>(T)))
return false;
SILBasicBlock *DestBB = SrcSuccs[EdgeIdx];
assert(!DestBB->pred_empty() && "There should be a predecessor");
if (DestBB->getSinglePredecessorBlock())
return false;
return true;
}
/// Splits the basic block at the iterator with an unconditional branch and
/// updates the dominator tree and loop info.
SILBasicBlock *swift::splitBasicBlockAndBranch(SILBuilder &B,
SILInstruction *SplitBeforeInst,
DominanceInfo *DT,
SILLoopInfo *LI) {
auto *OrigBB = SplitBeforeInst->getParent();
auto *NewBB = OrigBB->split(SplitBeforeInst->getIterator());
B.setInsertionPoint(OrigBB);
B.createBranch(SplitBeforeInst->getLoc(), NewBB);
// Update the dominator tree.
if (DT) {
auto OrigBBDTNode = DT->getNode(OrigBB);
if (OrigBBDTNode) {
// Change the immediate dominators of the children of the block we
// splitted to the splitted block.
SmallVector<DominanceInfoNode *, 16> Adoptees(OrigBBDTNode->begin(),
OrigBBDTNode->end());
auto NewBBDTNode = DT->addNewBlock(NewBB, OrigBB);
for (auto *Adoptee : Adoptees)
DT->changeImmediateDominator(Adoptee, NewBBDTNode);
}
}
// Update loop info.
if (LI)
if (auto *OrigBBLoop = LI->getLoopFor(OrigBB)) {
OrigBBLoop->addBasicBlockToLoop(NewBB, LI->getBase());
}
return NewBB;
}
/// Split every edge between two basic blocks.
void swift::splitEdgesFromTo(SILBasicBlock *From, SILBasicBlock *To,
DominanceInfo *DT, SILLoopInfo *LI) {
for (unsigned EdgeIndex = 0, E = From->getSuccessors().size(); EdgeIndex != E;
++EdgeIndex) {
SILBasicBlock *SuccBB = From->getSuccessors()[EdgeIndex];
if (SuccBB != To)
continue;
splitEdge(From->getTerminator(), EdgeIndex, DT, LI);
}
}
/// Splits the n-th critical edge from the terminator and updates dominance and
/// loop info if set.
/// Returns the newly created basic block on success or nullptr otherwise (if
/// the edge was not critical.
SILBasicBlock *swift::splitCriticalEdge(TermInst *T, unsigned EdgeIdx,
DominanceInfo *DT, SILLoopInfo *LI) {
if (!isCriticalEdge(T, EdgeIdx))
return nullptr;
return splitEdge(T, EdgeIdx, DT, LI);
}
bool swift::splitCriticalEdgesFrom(SILBasicBlock *fromBB, DominanceInfo *DT,
SILLoopInfo *LI) {
bool Changed = false;
for (unsigned idx = 0, e = fromBB->getSuccessors().size(); idx != e; ++idx) {
auto *NewBB = splitCriticalEdge(fromBB->getTerminator(), idx, DT, LI);
Changed |= (NewBB != nullptr);
}
return Changed;
}
bool swift::hasCriticalEdges(SILFunction &F, bool OnlyNonCondBr) {
for (SILBasicBlock &BB : F) {
// Only consider critical edges for terminators that don't support block
// arguments.
if (OnlyNonCondBr && isa<CondBranchInst>(BB.getTerminator()))
continue;
if (isa<BranchInst>(BB.getTerminator()))
continue;
for (unsigned Idx = 0, e = BB.getSuccessors().size(); Idx != e; ++Idx)
if (isCriticalEdge(BB.getTerminator(), Idx))
return true;
}
return false;
}
/// Split all critical edges in the function updating the dominator tree and
/// loop information (if they are not set to null).
bool swift::splitAllCriticalEdges(SILFunction &F, DominanceInfo *DT,
SILLoopInfo *LI) {
bool Changed = false;
for (SILBasicBlock &BB : F) {
if (isa<BranchInst>(BB.getTerminator()))
continue;
for (unsigned Idx = 0, e = BB.getSuccessors().size(); Idx != e; ++Idx) {
auto *NewBB = splitCriticalEdge(BB.getTerminator(), Idx, DT, LI);
assert(!NewBB
|| isa<CondBranchInst>(BB.getTerminator())
&& "Only cond_br may have a critical edge.");
Changed |= (NewBB != nullptr);
}
}
return Changed;
}
/// Merge the basic block with its successor if possible. If dominance
/// information or loop info is non null update it. Return true if block was
/// merged.
bool swift::mergeBasicBlockWithSuccessor(SILBasicBlock *BB, DominanceInfo *DT,
SILLoopInfo *LI) {
auto *Branch = dyn_cast<BranchInst>(BB->getTerminator());
if (!Branch)
return false;
auto *SuccBB = Branch->getDestBB();
if (BB == SuccBB || !SuccBB->getSinglePredecessorBlock())
return false;
if (DT)
if (auto *SuccBBNode = DT->getNode(SuccBB)) {
// Change the immediate dominator for children of the successor to be the
// current block.
auto *BBNode = DT->getNode(BB);
SmallVector<DominanceInfoNode *, 8> Children(SuccBBNode->begin(),
SuccBBNode->end());
for (auto *ChildNode : Children)
DT->changeImmediateDominator(ChildNode, BBNode);
DT->eraseNode(SuccBB);
}
if (LI)
LI->removeBlock(SuccBB);
mergeBasicBlockWithSingleSuccessor(BB, SuccBB);
return true;
}
bool swift::mergeBasicBlocks(SILFunction *F) {
bool merged = false;
for (auto BBIter = F->begin(); BBIter != F->end();) {
if (mergeBasicBlockWithSuccessor(&*BBIter, /*DT*/ nullptr, /*LI*/ nullptr)) {
merged = true;
// Continue to merge the current block without advancing.
continue;
}
++BBIter;
}
return merged;
}
/// Splits the critical edges between from and to. This code assumes there is
/// only one edge between the two basic blocks.
SILBasicBlock *swift::splitIfCriticalEdge(SILBasicBlock *From,
SILBasicBlock *To,
DominanceInfo *DT,
SILLoopInfo *LI) {
auto *T = From->getTerminator();
for (unsigned i = 0, e = T->getSuccessors().size(); i != e; ++i) {
if (T->getSuccessors()[i] == To)
return splitCriticalEdge(T, i, DT, LI);
}
llvm_unreachable("Destination block not found");
}
void swift::completeJointPostDominanceSet(
ArrayRef<SILBasicBlock *> UserBlocks, ArrayRef<SILBasicBlock *> DefBlocks,
llvm::SmallVectorImpl<SILBasicBlock *> &Result) {
assert(!UserBlocks.empty() && "Must have at least 1 user block");
assert(!DefBlocks.empty() && "Must have at least 1 def block");
// If we have only one def block and one user block and they are the same
// block, then just return.
if (DefBlocks.size() == 1 && UserBlocks.size() == 1 &&
UserBlocks[0] == DefBlocks[0]) {
return;
}
// Some notes on the algorithm:
//
// 1. Our VisitedBlocks set just states that a value has been added to the
// worklist and should not be added to the worklist.
// 2. Our targets of the CFG block are DefBlockSet.
// 3. We find the missing post-domination blocks by finding successors of
// blocks on our walk that we have not visited by the end of the walk. For
// joint post-dominance to be true, no such successors should exist.
// Our set of target blocks where we stop walking.
llvm::SmallPtrSet<SILBasicBlock *, 8> DefBlockSet(DefBlocks.begin(),
DefBlocks.end());
// The set of successor blocks of blocks that we visit. Any blocks still in
// this set at the end of the walk act as a post-dominating closure around our
// UserBlock set.
llvm::SmallSetVector<SILBasicBlock *, 16> MustVisitSuccessorBlocks;
// Add our user and def blocks to the VisitedBlock set. We never want to find
// these in our worklist.
llvm::SmallPtrSet<SILBasicBlock *, 32> VisitedBlocks(UserBlocks.begin(),
UserBlocks.end());
// Finally setup our worklist by adding our user block predecessors. We only
// add the predecessors to the worklist once.
llvm::SmallVector<SILBasicBlock *, 32> Worklist;
for (auto *Block : UserBlocks) {
llvm::copy_if(Block->getPredecessorBlocks(), std::back_inserter(Worklist),
[&](SILBasicBlock *PredBlock) -> bool {
return VisitedBlocks.insert(PredBlock).second;
});
}
// Then until we reach a fix point.
while (!Worklist.empty()) {
// Grab the next block from the worklist.
auto *Block = Worklist.pop_back_val();
assert(VisitedBlocks.count(Block) && "All blocks from worklist should be "
"in the visited blocks set.");
// Since we are visiting this block now, we know that this block can not be
// apart of a the post-dominance closure of our UseBlocks.
MustVisitSuccessorBlocks.remove(Block);
// Then add each successor block of Block that has not been visited yet to
// the MustVisitSuccessorBlocks set.
for (auto *SuccBlock : Block->getSuccessorBlocks()) {
if (!VisitedBlocks.count(SuccBlock)) {
MustVisitSuccessorBlocks.insert(SuccBlock);
}
}
// If this is a def block, then do not add its predecessors to the
// worklist.
if (DefBlockSet.count(Block))
continue;
// Otherwise add all unvisited predecessors to the worklist.
llvm::copy_if(Block->getPredecessorBlocks(), std::back_inserter(Worklist),
[&](SILBasicBlock *Block) -> bool {
return VisitedBlocks.insert(Block).second;
});
}
// Now that we are done, add all remaining must visit blocks to our result
// list. These are the remaining parts of our joint post-dominance closure.
llvm::copy(MustVisitSuccessorBlocks, std::back_inserter(Result));
}
bool swift::splitAllCondBrCriticalEdgesWithNonTrivialArgs(SILFunction &Fn,
DominanceInfo *DT,
SILLoopInfo *LI) {
// Find our targets.
llvm::SmallVector<std::pair<SILBasicBlock *, unsigned>, 8> Targets;
for (auto &Block : Fn) {
auto *CBI = dyn_cast<CondBranchInst>(Block.getTerminator());
if (!CBI)
continue;
// See if our true index is a critical edge. If so, add block to the list
// and continue. If the false edge is also critical, we will handle it at
// the same time.
if (isCriticalEdge(CBI, CondBranchInst::TrueIdx)) {
Targets.emplace_back(&Block, CondBranchInst::TrueIdx);
}
if (!isCriticalEdge(CBI, CondBranchInst::FalseIdx)) {
continue;
}
Targets.emplace_back(&Block, CondBranchInst::FalseIdx);
}
if (Targets.empty())
return false;
for (auto P : Targets) {
SILBasicBlock *Block = P.first;
unsigned Index = P.second;
auto *Result = splitCriticalEdge(Block->getTerminator(), Index, DT, LI);
(void)Result;
assert(Result);
}
return true;
}
bool swift::removeUnreachableBlocks(SILFunction &Fn) {
// All reachable blocks, but does not include the entry block.
llvm::SmallPtrSet<SILBasicBlock *, 8> Visited;
// Walk over the CFG, starting at the entry block, until all reachable blocks are visited.
llvm::SmallVector<SILBasicBlock *, 8> Worklist(1, Fn.getEntryBlock());
while (!Worklist.empty()) {
SILBasicBlock *BB = Worklist.pop_back_val();
for (auto &Succ : BB->getSuccessors()) {
if (Visited.insert(Succ).second)
Worklist.push_back(Succ);
}
}
// Remove the blocks we never reached. Exclude the entry block from the iteration because it's
// not included in the Visited set.
bool Changed = false;
for (auto It = std::next(Fn.begin()), End = Fn.end(); It != End; ) {
auto *BB = &*It++;
if (!Visited.count(BB)) {
removeDeadBlock(BB);
Changed = true;
}
}
return Changed;
}