forked from ali-vilab/AnyDoor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
356 lines (278 loc) · 10.5 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
import torch
import cv2
def mask_score(mask):
'''Scoring the mask according to connectivity.'''
mask = mask.astype(np.uint8)
if mask.sum() < 10:
return 0
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt_area = [cv2.contourArea(cnt) for cnt in contours]
conc_score = np.max(cnt_area) / sum(cnt_area)
return conc_score
def sobel(img, mask, thresh = 50):
'''Calculating the high-frequency map.'''
H,W = img.shape[0], img.shape[1]
img = cv2.resize(img,(256,256))
mask = (cv2.resize(mask,(256,256)) > 0.5).astype(np.uint8)
kernel = np.ones((5,5),np.uint8)
mask = cv2.erode(mask, kernel, iterations = 2)
Ksize = 3
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
sobel_X = cv2.convertScaleAbs(sobelx)
sobel_Y = cv2.convertScaleAbs(sobely)
scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
scharr = np.max(scharr,-1) * mask
scharr[scharr < thresh] = 0.0
scharr = np.stack([scharr,scharr,scharr],-1)
scharr = (scharr.astype(np.float32)/255 * img.astype(np.float32) ).astype(np.uint8)
scharr = cv2.resize(scharr,(W,H))
return scharr
def resize_and_pad(image, box):
'''Fitting an image to the box region while keeping the aspect ratio.'''
y1,y2,x1,x2 = box
H,W = y2-y1, x2-x1
h,w = image.shape[0], image.shape[1]
r_box = W / H
r_image = w / h
if r_box >= r_image:
h_target = H
w_target = int(w * H / h)
image = cv2.resize(image, (w_target, h_target))
w1 = (W - w_target) // 2
w2 = W - w_target - w1
pad_param = ((0,0),(w1,w2),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
else:
w_target = W
h_target = int(h * W / w)
image = cv2.resize(image, (w_target, h_target))
h1 = (H-h_target) // 2
h2 = H - h_target - h1
pad_param =((h1,h2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
return image
def expand_image_mask(image, mask, ratio=1.4):
h,w = image.shape[0], image.shape[1]
H,W = int(h * ratio), int(w * ratio)
h1 = int((H - h) // 2)
h2 = H - h - h1
w1 = int((W -w) // 2)
w2 = W -w - w1
pad_param_image = ((h1,h2),(w1,w2),(0,0))
pad_param_mask = ((h1,h2),(w1,w2))
image = np.pad(image, pad_param_image, 'constant', constant_values=255)
mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0)
return image, mask
def resize_box(yyxx, H,W,h,w):
y1,y2,x1,x2 = yyxx
y1,y2 = int(y1/H * h), int(y2/H * h)
x1,x2 = int(x1/W * w), int(x2/W * w)
y1,y2 = min(y1,h), min(y2,h)
x1,x2 = min(x1,w), min(x2,w)
return (y1,y2,x1,x2)
def get_bbox_from_mask(mask):
h,w = mask.shape[0],mask.shape[1]
if mask.sum() < 10:
return 0,h,0,w
rows = np.any(mask,axis=1)
cols = np.any(mask,axis=0)
y1,y2 = np.where(rows)[0][[0,-1]]
x1,x2 = np.where(cols)[0][[0,-1]]
return (y1,y2,x1,x2)
def expand_bbox(mask,yyxx,ratio=[1.2,2.0], min_crop=0):
y1,y2,x1,x2 = yyxx
ratio = np.random.randint( ratio[0] * 10, ratio[1] * 10 ) / 10
H,W = mask.shape[0], mask.shape[1]
xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2)
h = ratio * (y2-y1+1)
w = ratio * (x2-x1+1)
h = max(h,min_crop)
w = max(w,min_crop)
x1 = int(xc - w * 0.5)
x2 = int(xc + w * 0.5)
y1 = int(yc - h * 0.5)
y2 = int(yc + h * 0.5)
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
def box2squre(image, box):
H,W = image.shape[0], image.shape[1]
y1,y2,x1,x2 = box
cx = (x1 + x2) // 2
cy = (y1 + y2) // 2
h,w = y2-y1, x2-x1
if h >= w:
x1 = cx - h//2
x2 = cx + h//2
else:
y1 = cy - w//2
y2 = cy + w//2
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
def pad_to_square(image, pad_value = 255, random = False):
H,W = image.shape[0], image.shape[1]
if H == W:
return image
padd = abs(H - W)
if random:
padd_1 = int(np.random.randint(0,padd))
else:
padd_1 = int(padd / 2)
padd_2 = padd - padd_1
if H > W:
pad_param = ((0,0),(padd_1,padd_2),(0,0))
else:
pad_param = ((padd_1,padd_2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=pad_value)
return image
def box_in_box(small_box, big_box):
y1,y2,x1,x2 = small_box
y1_b, _, x1_b, _ = big_box
y1,y2,x1,x2 = y1 - y1_b ,y2 - y1_b, x1 - x1_b ,x2 - x1_b
return (y1,y2,x1,x2 )
def shuffle_image(image, N):
height, width = image.shape[:2]
block_height = height // N
block_width = width // N
blocks = []
for i in range(N):
for j in range(N):
block = image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width]
blocks.append(block)
np.random.shuffle(blocks)
shuffled_image = np.zeros((height, width, 3), dtype=np.uint8)
for i in range(N):
for j in range(N):
shuffled_image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = blocks[i*N+j]
return shuffled_image
def get_mosaic_mask(image, fg_mask, N=16, ratio = 0.5):
ids = [i for i in range(N * N)]
masked_number = int(N * N * ratio)
masked_id = np.random.choice(ids, masked_number, replace=False)
height, width = image.shape[:2]
mask = np.ones((height, width))
block_height = height // N
block_width = width // N
b_id = 0
for i in range(N):
for j in range(N):
if b_id in masked_id:
mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] * 0
b_id += 1
mask = mask * fg_mask
mask3 = np.stack([mask,mask,mask],-1).copy().astype(np.uint8)
noise = q_x(image)
noise_mask = image * mask3 + noise * (1-mask3)
return noise_mask
def extract_canney_noise(image, mask, dilate=True):
h,w = image.shape[0],image.shape[1]
mask = cv2.resize(mask.astype(np.uint8),(w,h)) > 0.5
kernel = np.ones((8, 8), dtype=np.uint8)
mask = cv2.erode(mask.astype(np.uint8), kernel, 10)
canny = cv2.Canny(image, 50,100) * mask
kernel = np.ones((8, 8), dtype=np.uint8)
mask = (cv2.dilate(canny, kernel, 5) > 128).astype(np.uint8)
mask = np.stack([mask,mask,mask],-1)
pure_noise = q_x(image, t=1) * 0 + 255
canny_noise = mask * image + (1-mask) * pure_noise
return canny_noise
def get_random_structure(size):
choice = np.random.randint(1, 5)
if choice == 1:
return cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
elif choice == 2:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))
elif choice == 3:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size//2))
elif choice == 4:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size//2, size))
def random_dilate(seg, min=3, max=10):
size = np.random.randint(min, max)
kernel = get_random_structure(size)
seg = cv2.dilate(seg,kernel,iterations = 1)
return seg
def random_erode(seg, min=3, max=10):
size = np.random.randint(min, max)
kernel = get_random_structure(size)
seg = cv2.erode(seg,kernel,iterations = 1)
return seg
def compute_iou(seg, gt):
intersection = seg*gt
union = seg+gt
return (np.count_nonzero(intersection) + 1e-6) / (np.count_nonzero(union) + 1e-6)
def select_max_region(mask):
nums, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
background = 0
for row in range(stats.shape[0]):
if stats[row, :][0] == 0 and stats[row, :][1] == 0:
background = row
stats_no_bg = np.delete(stats, background, axis=0)
max_idx = stats_no_bg[:, 4].argmax()
max_region = np.where(labels==max_idx+1, 1, 0)
return max_region.astype(np.uint8)
def perturb_mask(gt, min_iou = 0.3, max_iou = 0.99):
iou_target = np.random.uniform(min_iou, max_iou)
h, w = gt.shape
gt = gt.astype(np.uint8)
seg = gt.copy()
# Rare case
if h <= 2 or w <= 2:
print('GT too small, returning original')
return seg
# Do a bunch of random operations
for _ in range(250):
for _ in range(4):
lx, ly = np.random.randint(w), np.random.randint(h)
lw, lh = np.random.randint(lx+1,w+1), np.random.randint(ly+1,h+1)
# Randomly set one pixel to 1/0. With the following dilate/erode, we can create holes/external regions
if np.random.rand() < 0.1:
cx = int((lx + lw) / 2)
cy = int((ly + lh) / 2)
seg[cy, cx] = np.random.randint(2) * 255
# Dilate/erode
if np.random.rand() < 0.5:
seg[ly:lh, lx:lw] = random_dilate(seg[ly:lh, lx:lw])
else:
seg[ly:lh, lx:lw] = random_erode(seg[ly:lh, lx:lw])
seg = np.logical_or(seg, gt).astype(np.uint8)
#seg = select_max_region(seg)
if compute_iou(seg, gt) < iou_target:
break
seg = select_max_region(seg.astype(np.uint8))
return seg.astype(np.uint8)
def q_x(x_0,t=65):
'''Adding noise for and given image.'''
x_0 = torch.from_numpy(x_0).float() / 127.5 - 1
num_steps = 100
betas = torch.linspace(-6,6,num_steps)
betas = torch.sigmoid(betas)*(0.5e-2 - 1e-5)+1e-5
alphas = 1-betas
alphas_prod = torch.cumprod(alphas,0)
alphas_prod_p = torch.cat([torch.tensor([1]).float(),alphas_prod[:-1]],0)
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_log = torch.log(1 - alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)
noise = torch.randn_like(x_0)
alphas_t = alphas_bar_sqrt[t]
alphas_1_m_t = one_minus_alphas_bar_sqrt[t]
return (alphas_t * x_0 + alphas_1_m_t * noise).numpy() * 127.5 + 127.5
def extract_target_boundary(img, target_mask):
Ksize = 3
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
# sobel-x
sobel_X = cv2.convertScaleAbs(sobelx)
# sobel-y
sobel_Y = cv2.convertScaleAbs(sobely)
# sobel-xy
scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
scharr = np.max(scharr,-1).astype(np.float32)/255
scharr = scharr * target_mask.astype(np.float32)
return scharr