|
| 1 | +/* |
| 2 | + * asdf.cpp |
| 3 | + * |
| 4 | + * Created on: Oct 7, 2018 |
| 5 | + * Author: ryan |
| 6 | + */ |
| 7 | + |
| 8 | + // namespace caffe2 |
| 9 | + |
| 10 | +#include "ReadWriteNet.h" |
| 11 | + |
| 12 | +#include <list> |
| 13 | +#include <caffe2/proto/caffe2_pb.h> |
| 14 | + |
| 15 | +#include <caffe2/core/init.h> |
| 16 | +#include <caffe2/core/operator.h> |
| 17 | +#include <caffe2/core/operator_gradient.h> |
| 18 | +#include <caffe2/utils/proto_utils.h> |
| 19 | + |
| 20 | + |
| 21 | + |
| 22 | +namespace caffe2 { |
| 23 | + |
| 24 | +void print(Blob* blob, const std::string& name) { |
| 25 | + //auto tensor = blob->->Get<TensorCPU>(); |
| 26 | + Tensor* tensor = BlobGetMutableTensor(blob, caffe2::DeviceType::CPU); |
| 27 | + const auto& data = tensor->data<float>(); |
| 28 | + std::cout << name << "(" << tensor->dims() |
| 29 | + << "): " << std::vector<float>(data, data + tensor->size()) |
| 30 | + << std::endl; |
| 31 | +} |
| 32 | + |
| 33 | +void run() { |
| 34 | + std::cout << std::endl; |
| 35 | + std::cout << "## Caffe2 Intro Tutorial ##" << std::endl; |
| 36 | + std::cout << "https://caffe2.ai/docs/intro-tutorial.html" << std::endl; |
| 37 | + std::cout << std::endl; |
| 38 | + |
| 39 | + // >>> from caffe2.python import workspace, model_helper |
| 40 | + // >>> import numpy as np |
| 41 | + Workspace workspace; |
| 42 | + |
| 43 | + |
| 44 | + |
| 45 | + // >>> x = np.random.rand(4, 3, 2) |
| 46 | + std::vector<float> x(4 * 3 * 2); |
| 47 | + //for (auto& v : x) { |
| 48 | + // v = (float)rand() / RAND_MAX; |
| 49 | + //} |
| 50 | + |
| 51 | + int count = 0; |
| 52 | + Tensor value = Tensor(x.size(), caffe2::DeviceType::CPU); |
| 53 | + for (auto &v: x) { |
| 54 | + v = (float)rand() / RAND_MAX; |
| 55 | + value.mutable_data<float>()[count]=v; |
| 56 | + count++; |
| 57 | + } |
| 58 | + |
| 59 | + // >>> print(x) |
| 60 | + std::cout << x << std::endl; |
| 61 | + |
| 62 | + // >>> workspace.FeedBlob("my_x", x) |
| 63 | + { |
| 64 | + Blob* my_xBlob = workspace.CreateBlob("my_x"); |
| 65 | + Tensor* tensor = BlobGetMutableTensor(my_xBlob, caffe2::DeviceType::CPU); |
| 66 | + |
| 67 | + |
| 68 | + //tensor->ResizeLike(value); //still work |
| 69 | + //tensor->ShareData(value); //still work |
| 70 | + tensor->CopyFrom(value); |
| 71 | + } |
| 72 | + |
| 73 | + // >>> x2 = workspace.FetchBlob("my_x") |
| 74 | + // >>> print(x2) |
| 75 | + { |
| 76 | + Blob* blob = workspace.GetBlob("my_x"); |
| 77 | + print(blob, "my_x"); |
| 78 | + } |
| 79 | + |
| 80 | + |
| 81 | + /* |
| 82 | + * the above just demonstrated how to get data data into a tensor thats in a blob which is in a workspace |
| 83 | + */ |
| 84 | + // >>> data = np.random.rand(16, 100).astype(np.float32) |
| 85 | + |
| 86 | + |
| 87 | + //std::vector<float> data(16 * 100); |
| 88 | + std::vector<float> data(16*10); |
| 89 | + std::vector<int> dim({16,10}); |
| 90 | + count = 0; |
| 91 | + /*********************************************/ |
| 92 | + /* Important note |
| 93 | + * From what I could gather the data in the tensor is stored as a one dimensional array |
| 94 | + * so if you have this |
| 95 | + * |
| 96 | + * a b c d e f |
| 97 | + * g h I j k l |
| 98 | + * m n o p k r |
| 99 | + * |
| 100 | + * you feed it into the Tensor something like this |
| 101 | + * |
| 102 | + * r |
| 103 | + * p |
| 104 | + * o |
| 105 | + * n |
| 106 | + * m |
| 107 | + * l |
| 108 | + * k |
| 109 | + * k |
| 110 | + * j |
| 111 | + * I |
| 112 | + * h |
| 113 | + * g |
| 114 | + * f |
| 115 | + * e |
| 116 | + * d |
| 117 | + * c |
| 118 | + * b |
| 119 | + * a |
| 120 | + * |
| 121 | + * then the dimensions tell the tensor how the data is should look, so in this example |
| 122 | + * the dimensions would be {3,6} |
| 123 | + * |
| 124 | + * This was not obvious to me at first |
| 125 | + * |
| 126 | + * */ |
| 127 | + Tensor dataTen(dim, caffe2::DeviceType::CPU); |
| 128 | + |
| 129 | + for (auto& v : data) { |
| 130 | + v = (float)rand() / RAND_MAX; |
| 131 | + dataTen.mutable_data<float>()[count] =v; |
| 132 | + count++; |
| 133 | + } |
| 134 | + |
| 135 | + //just to show that the data is there |
| 136 | + for(int a =0; a<count; ++a) |
| 137 | + cout<<dataTen.mutable_data<float >()[a]<<endl; |
| 138 | + cout<<dataTen.DebugString()<<endl; |
| 139 | + |
| 140 | + // >>> label = (np.random.rand(16) * 10).astype(np.int32) |
| 141 | + std::vector<int> label(16,1); |
| 142 | + count = 0; |
| 143 | + Tensor labelTen = Tensor(label.size(), caffe2::DeviceType::CPU); |
| 144 | + for (auto& v : label) { |
| 145 | + v = rand() %10; |
| 146 | + labelTen.mutable_data<int>()[count]=v; |
| 147 | + count++; |
| 148 | + } |
| 149 | + |
| 150 | + |
| 151 | + |
| 152 | + // >>> workspace.FeedBlob("data", data) |
| 153 | + { |
| 154 | + //auto tensor = workspace.CreateBlob("data")->GetMutable<TensorCPU>(); |
| 155 | + Blob* myBlob = workspace.CreateBlob("data"); |
| 156 | + Tensor* tensor = caffe2::BlobGetMutableTensor(myBlob, caffe2::DeviceType::CPU); |
| 157 | + |
| 158 | + //auto value = TensorCPU({16, 100}, data, NULL); |
| 159 | + //dataTen is used instead of value |
| 160 | + |
| 161 | + //tensor->ResizeLike(value); |
| 162 | + //tensor->ShareData(value); |
| 163 | + tensor->CopyFrom(dataTen);//the above two lines works this is just a different way to do it you will see later that I do it this way |
| 164 | + } |
| 165 | + |
| 166 | + // >>> workspace.FeedBlob("label", label) |
| 167 | + { |
| 168 | + //auto tensor = workspace.CreateBlob("label")->GetMutable<TensorCPU>(); |
| 169 | + Blob* myBlob = workspace.CreateBlob("label"); |
| 170 | + Tensor* tensor = caffe2::BlobGetMutableTensor(myBlob, caffe2::DeviceType::CPU); |
| 171 | + |
| 172 | + //auto value = TensorCPU({16}, label, NULL); |
| 173 | + //labelTen is used instead of value |
| 174 | + |
| 175 | + //tensor->ResizeLike(value); |
| 176 | + //tensor->ShareData(value); |
| 177 | + tensor->CopyFrom(labelTen);//the above two lines works this is just a different way to do it you will see later that I do it this way |
| 178 | + |
| 179 | + } |
| 180 | + |
| 181 | + // >>> m = model_helper.ModelHelper(name="my first net") |
| 182 | + NetDef initModel; |
| 183 | + initModel.set_name("my first net_init"); |
| 184 | + NetDef predictModel; |
| 185 | + predictModel.set_name("my first net"); |
| 186 | + |
| 187 | + // >>> weight = m.param_initModel.XavierFill([], 'fc_w', shape=[10, 100]) |
| 188 | + { |
| 189 | + auto op = initModel.add_op(); |
| 190 | + op->set_type("XavierFill"); |
| 191 | + auto arg = op->add_arg(); |
| 192 | + arg->set_name("shape"); |
| 193 | + arg->add_ints(16); |
| 194 | + arg->add_ints(10); |
| 195 | + op->add_output("fc_w"); |
| 196 | + } |
| 197 | + |
| 198 | + |
| 199 | + // >>> bias = m.param_initModel.ConstantFill([], 'fc_b', shape=[10, ]) |
| 200 | + { |
| 201 | + auto op = initModel.add_op(); |
| 202 | + op->set_type("ConstantFill"); |
| 203 | + auto arg = op->add_arg(); |
| 204 | + arg->set_name("shape"); |
| 205 | + arg->add_ints(16); |
| 206 | + op->add_output("fc_b"); |
| 207 | + } |
| 208 | + |
| 209 | + std::vector<OperatorDef*> gradient_ops; |
| 210 | + |
| 211 | + // >>> fc_1 = m.net.FC(["data", "fc_w", "fc_b"], "fc1") |
| 212 | + { |
| 213 | + auto op = predictModel.add_op(); |
| 214 | + op->set_type("FC"); |
| 215 | + op->add_input("data"); |
| 216 | + op->add_input("fc_w"); |
| 217 | + op->add_input("fc_b"); |
| 218 | + op->add_output("fc1"); |
| 219 | + gradient_ops.push_back(op); |
| 220 | + } |
| 221 | + |
| 222 | + // >>> pred = m.net.Sigmoid(fc_1, "pred") |
| 223 | + { |
| 224 | + auto op = predictModel.add_op(); |
| 225 | + op->set_type("Sigmoid"); |
| 226 | + op->add_input("fc1"); |
| 227 | + op->add_output("pred"); |
| 228 | + gradient_ops.push_back(op); |
| 229 | + } |
| 230 | + |
| 231 | + // >>> [softmax, loss] = m.net.SoftmaxWithLoss([pred, "label"], ["softmax", |
| 232 | + // "loss"]) |
| 233 | + { |
| 234 | + auto op = predictModel.add_op(); |
| 235 | + op->set_type("SoftmaxWithLoss"); |
| 236 | + op->add_input("pred"); |
| 237 | + op->add_input("label"); |
| 238 | + op->add_output("softmax"); |
| 239 | + op->add_output("loss"); |
| 240 | + gradient_ops.push_back(op); |
| 241 | + } |
| 242 | + |
| 243 | + // >>> m.AddGradientOperators([loss]) |
| 244 | + { |
| 245 | + auto op = predictModel.add_op(); |
| 246 | + op->set_type("ConstantFill"); |
| 247 | + auto arg = op->add_arg(); |
| 248 | + arg->set_name("value"); |
| 249 | + arg->set_f(1.0); |
| 250 | + op->add_input("loss"); |
| 251 | + op->add_output("loss_grad"); |
| 252 | + op->set_is_gradient_op(true); |
| 253 | + } |
| 254 | + std::reverse(gradient_ops.begin(), gradient_ops.end()); |
| 255 | + for (auto op : gradient_ops) { |
| 256 | + vector<GradientWrapper> output(op->output_size()); |
| 257 | + for (auto i = 0; i < output.size(); i++) { |
| 258 | + output[i].dense_ = op->output(i) + "_grad"; |
| 259 | + } |
| 260 | + GradientOpsMeta meta = GetGradientForOp(*op, output); |
| 261 | + auto grad = predictModel.add_op(); |
| 262 | + grad->CopyFrom(meta.ops_[0]); |
| 263 | + grad->set_is_gradient_op(true); |
| 264 | + } |
| 265 | + |
| 266 | + // >>> print(str(m.net.Proto())) |
| 267 | + // std::cout << std::endl; |
| 268 | + // print(predictModel); |
| 269 | + |
| 270 | + // >>> print(str(m.param_init_net.Proto())) |
| 271 | + // std::cout << std::endl; |
| 272 | + // print(initModel); |
| 273 | + |
| 274 | + // >>> workspace.RunNetOnce(m.param_init_net) |
| 275 | + CAFFE_ENFORCE(workspace.RunNetOnce(initModel)); |
| 276 | + |
| 277 | + |
| 278 | + // >>> workspace.CreateNet(m.net) |
| 279 | + CAFFE_ENFORCE(workspace.CreateNet(predictModel)); |
| 280 | + |
| 281 | + |
| 282 | + // >>> for j in range(0, 100): |
| 283 | + for (auto i = 0; i < 100; i++) { |
| 284 | + // >>> data = np.random.rand(16, 100).astype(np.float32) |
| 285 | + //std::vector<float> data(16 * 100); |
| 286 | + std::vector<float> data(16*10); |
| 287 | + count=0; |
| 288 | + for (auto& v : data) { |
| 289 | + v = (float)rand() / RAND_MAX; |
| 290 | + dataTen.mutable_data<float>()[count] = v; |
| 291 | + count++; |
| 292 | + } |
| 293 | + |
| 294 | + // >>> label = (np.random.rand(16) * 10).astype(np.int32) |
| 295 | + std::vector<int> label(16); |
| 296 | + count = 0; |
| 297 | + for (auto& v : label) { |
| 298 | + v = rand() %10; |
| 299 | + labelTen.mutable_data<int>()[count] = v; |
| 300 | + count++; |
| 301 | + |
| 302 | + } |
| 303 | + |
| 304 | + // >>> workspace.FeedBlob("data", data) |
| 305 | + { |
| 306 | + //auto tensor = workspace.GetBlob("data")->GetMutable<TensorCPU>(); |
| 307 | + Blob* myBlob = workspace.GetBlob("data"); |
| 308 | + Tensor* tensor = caffe2::BlobGetMutableTensor(myBlob, caffe2::DeviceType::CPU); |
| 309 | + //auto value = TensorCPU({16, 100}, data, NULL); |
| 310 | + //tensor->ShareData(value); |
| 311 | + tensor->ResizeLike(dataTen); |
| 312 | + tensor->ShareData(dataTen); |
| 313 | + |
| 314 | + |
| 315 | + } |
| 316 | + |
| 317 | + // >>> workspace.FeedBlob("label", label) |
| 318 | + { |
| 319 | + //auto tensor = workspace.GetBlob("label")->GetMutable<TensorCPU>(); |
| 320 | + Blob* myBlob = workspace.GetBlob("label"); |
| 321 | + Tensor* tensor = caffe2::BlobGetMutableTensor(myBlob, caffe2::DeviceType::CPU); |
| 322 | + //auto value = TensorCPU({16}, label, NULL); |
| 323 | + //tensor->ShareData(value); |
| 324 | + tensor->ResizeLike(labelTen); |
| 325 | + tensor->ShareData(labelTen); |
| 326 | + |
| 327 | + } |
| 328 | + |
| 329 | + cout<<predictModel.DebugString()<<endl; |
| 330 | + cout<<predictModel.external_input_size()<<endl; |
| 331 | + predictModel.InitAsDefaultInstance(); |
| 332 | + |
| 333 | + |
| 334 | + // >>> workspace.RunNet(m.name, 10) # run for 10 times |
| 335 | + for (auto j = 0; j < 10; j++) { |
| 336 | + predictModel.CheckInitialized(); |
| 337 | + CAFFE_ENFORCE(workspace.RunNet(predictModel.name())); |
| 338 | + std::cout << "step: " << i << " loss: "; |
| 339 | + print(workspace.GetBlob("loss"),"loss"); |
| 340 | + std::cout << std::endl; |
| 341 | + } |
| 342 | + } |
| 343 | + |
| 344 | + std::cout << std::endl; |
| 345 | + |
| 346 | + // >>> print(workspace.FetchBlob("softmax")) |
| 347 | + print(workspace.GetBlob("softmax"), "softmax"); |
| 348 | + |
| 349 | + std::cout << std::endl; |
| 350 | + |
| 351 | + // >>> print(workspace.FetchBlob("loss")) |
| 352 | + print(workspace.GetBlob("loss"), "loss"); |
| 353 | +} |
| 354 | + |
| 355 | +} |
| 356 | +int main(int argc, char **argv) { |
| 357 | + |
| 358 | + caffe2::GlobalInit(&argc, &argv); |
| 359 | + caffe2::run(); |
| 360 | + google::protobuf::ShutdownProtobufLibrary(); |
| 361 | + |
| 362 | + |
| 363 | + return 0; |
| 364 | +} |
0 commit comments