forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqda.py
224 lines (186 loc) · 6.98 KB
/
qda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""
Quadratic Discriminant Analysis
"""
# Author: Matthieu Perrot <[email protected]>
#
# License: BSD 3 clause
import warnings
import numpy as np
from .base import BaseEstimator, ClassifierMixin
from .externals.six.moves import xrange
from .utils import check_array, check_X_y
__all__ = ['QDA']
class QDA(BaseEstimator, ClassifierMixin):
"""
Quadratic Discriminant Analysis (QDA)
A classifier with a quadratic decision boundary, generated
by fitting class conditional densities to the data
and using Bayes' rule.
The model fits a Gaussian density to each class.
Parameters
----------
priors : array, optional, shape = [n_classes]
Priors on classes
reg_param : float, optional
Regularizes the covariance estimate as
``(1-reg_param)*Sigma + reg_param*np.eye(n_features)``
Attributes
----------
`covariances_` : list of array-like, shape = [n_features, n_features]
Covariance matrices of each class.
`means_` : array-like, shape = [n_classes, n_features]
Class means.
`priors_` : array-like, shape = [n_classes]
Class priors (sum to 1).
`rotations_` : list of arrays
For each class an array of shape [n_samples, n_samples], the
rotation of the Gaussian distribution, i.e. its principal axis.
`scalings_` : array-like, shape = [n_classes, n_features]
Contains the scaling of the Gaussian
distributions along the principal axes for each
class, i.e. the variance in the rotated coordinate system.
Examples
--------
>>> from sklearn.qda import QDA
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QDA()
>>> clf.fit(X, y)
QDA(priors=None, reg_param=0.0)
>>> print(clf.predict([[-0.8, -1]]))
[1]
See also
--------
sklearn.lda.LDA: Linear discriminant analysis
"""
def __init__(self, priors=None, reg_param=0.):
self.priors = np.asarray(priors) if priors is not None else None
self.reg_param = reg_param
def fit(self, X, y, store_covariances=False, tol=1.0e-4):
"""
Fit the QDA model according to the given training data and parameters.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array, shape = [n_samples]
Target values (integers)
store_covariances : boolean
If True the covariance matrices are computed and stored in the
`self.covariances_` attribute.
"""
X, y = check_X_y(X, y)
self.classes_, y = np.unique(y, return_inverse=True)
n_samples, n_features = X.shape
n_classes = len(self.classes_)
if n_classes < 2:
raise ValueError('y has less than 2 classes')
if self.priors is None:
self.priors_ = np.bincount(y) / float(n_samples)
else:
self.priors_ = self.priors
cov = None
if store_covariances:
cov = []
means = []
scalings = []
rotations = []
for ind in xrange(n_classes):
Xg = X[y == ind, :]
meang = Xg.mean(0)
means.append(meang)
Xgc = Xg - meang
# Xgc = U * S * V.T
U, S, Vt = np.linalg.svd(Xgc, full_matrices=False)
rank = np.sum(S > tol)
if rank < n_features:
warnings.warn("Variables are collinear")
S2 = (S ** 2) / (len(Xg) - 1)
S2 = ((1 - self.reg_param) * S2) + self.reg_param
if store_covariances:
# cov = V * (S^2 / (n-1)) * V.T
cov.append(np.dot(S2 * Vt.T, Vt))
scalings.append(S2)
rotations.append(Vt.T)
if store_covariances:
self.covariances_ = cov
self.means_ = np.asarray(means)
self.scalings_ = np.asarray(scalings)
self.rotations_ = rotations
return self
def _decision_function(self, X):
X = check_array(X)
norm2 = []
for i in range(len(self.classes_)):
R = self.rotations_[i]
S = self.scalings_[i]
Xm = X - self.means_[i]
X2 = np.dot(Xm, R * (S ** (-0.5)))
norm2.append(np.sum(X2 ** 2, 1))
norm2 = np.array(norm2).T # shape = [len(X), n_classes]
return (-0.5 * (norm2 + np.sum(np.log(self.scalings_), 1))
+ np.log(self.priors_))
def decision_function(self, X):
"""Apply decision function to an array of samples.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Array of samples (test vectors).
Returns
-------
C : array, shape = [n_samples, n_classes] or [n_samples,]
Decision function values related to each class, per sample.
In the two-class case, the shape is [n_samples,], giving the
log likelihood ratio of the positive class.
"""
dec_func = self._decision_function(X)
# handle special case of two classes
if len(self.classes_) == 2:
return dec_func[:, 1] - dec_func[:, 0]
return dec_func
def predict(self, X):
"""Perform classification on an array of test vectors X.
The predicted class C for each sample in X is returned.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
"""
d = self._decision_function(X)
y_pred = self.classes_.take(d.argmax(1))
return y_pred
def predict_proba(self, X):
"""Return posterior probabilities of classification.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Array of samples/test vectors.
Returns
-------
C : array, shape = [n_samples, n_classes]
Posterior probabilities of classification per class.
"""
values = self._decision_function(X)
# compute the likelihood of the underlying gaussian models
# up to a multiplicative constant.
likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis])
# compute posterior probabilities
return likelihood / likelihood.sum(axis=1)[:, np.newaxis]
def predict_log_proba(self, X):
"""Return posterior probabilities of classification.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Array of samples/test vectors.
Returns
-------
C : array, shape = [n_samples, n_classes]
Posterior log-probabilities of classification per class.
"""
# XXX : can do better to avoid precision overflows
probas_ = self.predict_proba(X)
return np.log(probas_)