-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathfer2013_cnn.py
76 lines (57 loc) · 2.27 KB
/
fer2013_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
train_dir = '/home/rkuo/Datasets/FER2013_clean/train'
test_dir = '/home/rkuo/Datasets/FER2013_clean/test'
## Dataset Generator
from tensorflow.keras.preprocessing.image import ImageDataGenerator
batch_size = 64
target_size = (48,48)
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=target_size,
batch_size=batch_size,
color_mode="grayscale",
class_mode='categorical',
shuffle=True)
test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=target_size,
batch_size=batch_size,
color_mode="grayscale",
class_mode='categorical',
shuffle=False)
labels = list(train_generator.class_indices.keys())
print(labels)
## Build Model
from tensorflow.keras import models, layers
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Flatten, Dense
input_shape = (48,48,1) # img_rows, img_colums, color_channels
num_classes = len(labels) # 7
## Build Model
model = models.Sequential()
model.add(Conv2D(16, kernel_size=(3, 3), activation='relu', padding='same', input_shape=input_shape))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(96, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(num_classes, activation='softmax'))
model.summary()
## Compile Model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
## Train Model
history = model.fit(train_generator, validation_data=test_generator, epochs=50)
## Evaluate Model
score = model.evaluate(test_generator)
print('Test loss: ', score[0])
print('Test accuracy: ', score[1])
## Save Model
models.save_model(model, 'fer2013_cnn.h5')