forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIRGen.h
285 lines (228 loc) · 8.28 KB
/
IRGen.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//===--- IRGen.h - Common Declarations for IR Generation --------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines some types that are generically useful in IR
// Generation.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_IRGEN_IRGEN_H
#define SWIFT_IRGEN_IRGEN_H
#include "llvm/Support/DataTypes.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/SIL/AbstractionPattern.h"
#include <cassert>
namespace llvm {
class Value;
}
namespace swift {
class CanType;
class ClusteredBitVector;
enum ForDefinition_t : bool;
namespace irgen {
using Lowering::AbstractionPattern;
/// In IRGen, we use Swift's ClusteredBitVector data structure to
/// store vectors of spare bits.
using SpareBitVector = ClusteredBitVector;
class Size;
enum IsPOD_t : bool { IsNotPOD, IsPOD };
inline IsPOD_t operator&(IsPOD_t l, IsPOD_t r) {
return IsPOD_t(unsigned(l) & unsigned(r));
}
inline IsPOD_t &operator&=(IsPOD_t &l, IsPOD_t r) {
return (l = (l & r));
}
enum IsFixedSize_t : bool { IsNotFixedSize, IsFixedSize };
inline IsFixedSize_t operator&(IsFixedSize_t l, IsFixedSize_t r) {
return IsFixedSize_t(unsigned(l) & unsigned(r));
}
inline IsFixedSize_t &operator&=(IsFixedSize_t &l, IsFixedSize_t r) {
return (l = (l & r));
}
enum IsLoadable_t : bool { IsNotLoadable, IsLoadable };
inline IsLoadable_t operator&(IsLoadable_t l, IsLoadable_t r) {
return IsLoadable_t(unsigned(l) & unsigned(r));
}
inline IsLoadable_t &operator&=(IsLoadable_t &l, IsLoadable_t r) {
return (l = (l & r));
}
enum IsBitwiseTakable_t : bool { IsNotBitwiseTakable, IsBitwiseTakable };
inline IsBitwiseTakable_t operator&(IsBitwiseTakable_t l, IsBitwiseTakable_t r) {
return IsBitwiseTakable_t(unsigned(l) & unsigned(r));
}
inline IsBitwiseTakable_t &operator&=(IsBitwiseTakable_t &l, IsBitwiseTakable_t r) {
return (l = (l & r));
}
/// Whether or not an object should be emitted on the heap.
enum OnHeap_t : unsigned char {
NotOnHeap,
OnHeap
};
/// Whether a function requires extra data.
enum class ExtraData : unsigned char {
/// The function requires no extra data.
None,
/// The function requires a retainable object pointer of extra data.
Retainable,
/// The function takes its block object as extra data.
Block,
Last_ExtraData = Block
};
/// ResilienceScope - The compiler is often able to pursue
/// optimizations based on its knowledge of the implementation of some
/// language structure. However, optimizations which affect
/// cross-component interfaces are not necessarily sound in the face
/// of differing compiler versions and API changes that make types
/// fragile. The "resilience scope" is the breadth of the code
/// affected by the answer to a question being asked.
///
/// TODO: maybe deployment versions should factor in here. If a
/// question is being asked vis-a-vis the implementation of a subject
/// structure that is unavailable in any revision for which the object
/// structure is resilient, is there any reason not to answer as if
/// the subject structure were universally fragile?
enum class ResilienceScope {
/// Component scope means the decision has to be consistent within
/// the current component only.
Component,
/// Universal scope means that the decision has to be consistent
/// across all possible clients who could see this declaration.
Universal
};
/// Destructor variants.
enum class DestructorKind : uint8_t {
/// A deallocating destructor destroys the object and deallocates
/// the memory associated with it.
Deallocating,
/// A destroying destructor destroys the object but does not
/// deallocate the memory associated with it.
Destroying
};
/// Constructor variants.
enum class ConstructorKind : uint8_t {
/// An allocating constructor allocates an object and initializes it.
Allocating,
/// An initializing constructor just initializes an existing object.
Initializing
};
/// An alignment value, in eight-bit units.
class Alignment {
public:
typedef uint32_t int_type;
Alignment() : Value(0) {}
explicit Alignment(int_type Value) : Value(Value) {}
int_type getValue() const { return Value; }
int_type getMaskValue() const { return Value - 1; }
bool isOne() const { return Value == 1; }
bool isZero() const { return Value == 0; }
Alignment alignmentAtOffset(Size S) const;
Size asSize() const;
unsigned log2() const {
return llvm::Log2_64(Value);
}
explicit operator bool() const { return Value != 0; }
friend bool operator< (Alignment L, Alignment R){ return L.Value < R.Value; }
friend bool operator<=(Alignment L, Alignment R){ return L.Value <= R.Value; }
friend bool operator> (Alignment L, Alignment R){ return L.Value > R.Value; }
friend bool operator>=(Alignment L, Alignment R){ return L.Value >= R.Value; }
friend bool operator==(Alignment L, Alignment R){ return L.Value == R.Value; }
friend bool operator!=(Alignment L, Alignment R){ return L.Value != R.Value; }
private:
int_type Value;
};
/// A size value, in eight-bit units.
class Size {
public:
typedef uint64_t int_type;
constexpr Size() : Value(0) {}
explicit constexpr Size(int_type Value) : Value(Value) {}
/// An "invalid" size, equal to the maximum possible size.
static constexpr Size invalid() { return Size(~int_type(0)); }
/// Is this the "invalid" size value?
bool isInvalid() const { return *this == Size::invalid(); }
int_type getValue() const { return Value; }
int_type getValueInBits() const { return Value * 8; }
bool isZero() const { return Value == 0; }
friend Size operator+(Size L, Size R) {
return Size(L.Value + R.Value);
}
friend Size &operator+=(Size &L, Size R) {
L.Value += R.Value;
return L;
}
friend Size operator-(Size L, Size R) {
return Size(L.Value - R.Value);
}
friend Size &operator-=(Size &L, Size R) {
L.Value -= R.Value;
return L;
}
friend Size operator*(Size L, int_type R) {
return Size(L.Value * R);
}
friend Size operator*(int_type L, Size R) {
return Size(L * R.Value);
}
friend Size &operator*=(Size &L, int_type R) {
L.Value *= R;
return L;
}
friend int_type operator/(Size L, Size R) {
return L.Value / R.Value;
}
explicit operator bool() const { return Value != 0; }
Size roundUpToAlignment(Alignment align) const {
int_type value = getValue() + align.getValue() - 1;
return Size(value & ~int_type(align.getValue() - 1));
}
bool isPowerOf2() const {
auto value = getValue();
return ((value & -value) == value);
}
bool isMultipleOf(Size other) const {
return (Value % other.Value) == 0;
}
unsigned log2() const {
return llvm::Log2_64(Value);
}
friend bool operator< (Size L, Size R) { return L.Value < R.Value; }
friend bool operator<=(Size L, Size R) { return L.Value <= R.Value; }
friend bool operator> (Size L, Size R) { return L.Value > R.Value; }
friend bool operator>=(Size L, Size R) { return L.Value >= R.Value; }
friend bool operator==(Size L, Size R) { return L.Value == R.Value; }
friend bool operator!=(Size L, Size R) { return L.Value != R.Value; }
friend Size operator%(Size L, Alignment R) {
return Size(L.Value % R.getValue());
}
private:
int_type Value;
};
/// Compute the alignment of a pointer which points S bytes after a
/// pointer with this alignment.
inline Alignment Alignment::alignmentAtOffset(Size S) const {
assert(getValue() && "called on object with zero alignment");
// If the offset is zero, use the original alignment.
Size::int_type V = S.getValue();
if (!V) return *this;
// Find the offset's largest power-of-two factor.
V = V & -V;
// The alignment at the offset is then the min of the two values.
if (V < getValue())
return Alignment(static_cast<Alignment::int_type>(V));
return *this;
}
/// Get this alignment asx a Size value.
inline Size Alignment::asSize() const {
return Size(getValue());
}
} // end namespace irgen
} // end namespace swift
#endif