-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathcoverage.cpp
199 lines (153 loc) · 5.4 KB
/
coverage.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// coverage.cpp
//
// Copyright (C) 2016 - 2022 Jay Hesselberth and Kent Riemondy
//
// This file is part of valr.
//
// This software may be modified and distributed under the terms
// of the MIT license. See the LICENSE file for details.
#include "valr.h"
void coverage_group(ivl_vector_t vx, ivl_vector_t vy,
std::vector<int>& overlap_counts, std::vector<int>& ivls_bases_covered,
std::vector<int>& x_ivl_lengths, std::vector<double>& fractions_covered,
std::vector<int>& indices_x) {
ivl_tree_t tree_y(std::move(vy)) ;
ivl_vector_t overlaps ;
IntervalSorterDesc<int, int> intervalSorterDesc;
for (auto it : vx) {
indices_x.push_back(it.value);
overlaps = tree_y.findOverlapping(it.start, it.stop) ;
// compute number of overlaps
int overlap_count = overlaps.size();
overlap_counts.push_back(overlap_count);
// handle no overlaps and continue
if (overlap_count == 0) {
int x_ivl_length = it.stop - it.start ;
x_ivl_lengths.push_back(x_ivl_length) ;
ivls_bases_covered.push_back(0) ;
fractions_covered.push_back(0) ;
continue;
}
// variables to compute number of bases
int ivl_bases_covered = 0;
auto x_ivl_start = it.start;
auto x_ivl_stop = it.stop;
// total x interval length
int x_ivl_length = x_ivl_stop - x_ivl_start ;
x_ivl_lengths.push_back(x_ivl_length) ;
// merge all overlapping intervals to compute number of bases covered
// perhaps reuse this code as a seperate function
// sort overlaps by start descending
std::sort(overlaps.begin(), overlaps.end(), intervalSorterDesc) ;
int index = 0; // Stores index of last element
// Traverse all overlapping intervals
for (int i = 0; i < overlap_count; i++) {
// If this is not first Interval and overlaps
// with the previous one
if (index != 0 && overlaps[index - 1].start <= overlaps[i].stop)
{
while (index != 0 && overlaps[index - 1].start <= overlaps[i].stop)
{
// Merge previous and current Intervals
overlaps[index - 1].stop = std::max(overlaps[index - 1].stop, overlaps[i].stop);
overlaps[index - 1].start = std::min(overlaps[index - 1].start, overlaps[i].start);
index--;
}
}
else // Doesn't overlap with previous, add to
// solution
overlaps[index] = overlaps[i];
index++;
}
ivl_vector_t mergedOverlaps;
for (int i = 0; i < index; i++) {
mergedOverlaps.push_back(overlaps[i]);;
}
overlaps.clear();
// iterate through merged overlaps and compute number of covered bases
for (auto oit : mergedOverlaps) {
auto y_ivl_start = oit.start;
auto y_ivl_stop = oit.stop;
if (y_ivl_start < x_ivl_start) {
y_ivl_start = x_ivl_start ;
}
if (y_ivl_stop > x_ivl_stop) {
y_ivl_stop = x_ivl_stop ;
}
int coveredBases = y_ivl_stop - y_ivl_start;
ivl_bases_covered += coveredBases;
}
auto fraction_covered = (double) ivl_bases_covered / x_ivl_length ;
ivls_bases_covered.push_back(ivl_bases_covered) ;
fractions_covered.push_back(fraction_covered) ;
mergedOverlaps.clear();
}
}
//[[Rcpp::export]]
DataFrame coverage_impl(ValrGroupedDataFrame x, ValrGroupedDataFrame y,
IntegerVector x_grp_indexes,
IntegerVector y_grp_indexes) {
// overlapping interval stats
std::vector<int> overlap_counts ;
std::vector<int> ivls_bases_covered ;
std::vector<int> x_ivl_lengths ;
std::vector<double> fractions_covered ;
// indices for subsetting
std::vector<int> indices_x ;
auto data_x = x.data() ;
GroupApply(x, y, x_grp_indexes, y_grp_indexes,
coverage_group,
std::ref(overlap_counts), std::ref(ivls_bases_covered),
std::ref(x_ivl_lengths), std::ref(fractions_covered), std::ref(indices_x));
// handle condition with empty y df
// just assign zeros, except for interval length
if (y.data().nrows() == 0) {
auto ng_x = x.ngroups() ;
ListView idx_x(x.indices()) ;
for (int nx = 0; nx < ng_x; nx++) {
IntegerVector gi_x ;
gi_x = idx_x[nx];
ivl_vector_t vx = makeIntervalVector(data_x, gi_x) ;
for (auto it : vx) {
indices_x.push_back(it.value) ;
overlap_counts.push_back(0);
int x_ivl_length = it.stop - it.start ;
x_ivl_lengths.push_back(x_ivl_length) ;
ivls_bases_covered.push_back(0) ;
fractions_covered.push_back(0) ;
}
}
}
DataFrame subset_x = subset_dataframe(data_x, indices_x) ;
DataFrameBuilder out;
// x names, data
out.add_df(subset_x, false) ;
// additional columns
out.names.push_back(".ints") ;
out.data.push_back(overlap_counts) ;
out.names.push_back(".cov") ;
out.data.push_back(ivls_bases_covered) ;
out.names.push_back(".len") ;
out.data.push_back(x_ivl_lengths) ;
out.names.push_back(".frac") ;
out.data.push_back(fractions_covered) ;
auto nrows = subset_x.nrows() ;
auto res = out.format_df(nrows) ;
return res ;
}
/***R
library(valr)
library(dplyr)
genome <- tibble::tribble(
~chrom, ~size,
"chr1", 1e6,
"chr2", 1e7
)
n <- 1e5
x <- bed_random(genome, n = n) %>% bed_sort %>% group_by(chrom)
y <- bed_random(genome, n = n) %>% bed_sort %>% group_by(chrom)
library(microbenchmark)
microbenchmark(
intersect_impl(x, y)
)
*/