Skip to content

Latest commit

 

History

History
 
 

lifesat

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Life satisfaction and GDP per capita

Life satisfaction

Source

This dataset was obtained from the OECD's website at: http://stats.oecd.org/index.aspx?DataSetCode=BLI

Data description

Int64Index: 3292 entries, 0 to 3291
Data columns (total 17 columns):
"LOCATION"              3292 non-null object
Country                  3292 non-null object
INDICATOR                3292 non-null object
Indicator                3292 non-null object
MEASURE                  3292 non-null object
Measure                  3292 non-null object
INEQUALITY               3292 non-null object
Inequality               3292 non-null object
Unit Code                3292 non-null object
Unit                     3292 non-null object
PowerCode Code           3292 non-null int64
PowerCode                3292 non-null object
Reference Period Code    0 non-null float64
Reference Period         0 non-null float64
Value                    3292 non-null float64
Flag Codes               1120 non-null object
Flags                    1120 non-null object
dtypes: float64(3), int64(1), object(13)
memory usage: 462.9+ KB

Example usage using python Pandas

>>> life_sat = pd.read_csv("oecd_bli_2015.csv", thousands=',')

>>> life_sat_total = life_sat[life_sat["INEQUALITY"]=="TOT"]

>>> life_sat_total = life_sat_total.pivot(index="Country", columns="Indicator", values="Value")

>>> life_sat_total.info()
<class 'pandas.core.frame.DataFrame'>
Index: 37 entries, Australia to United States
Data columns (total 24 columns):
Air pollution                                37 non-null float64
Assault rate                                 37 non-null float64
Consultation on rule-making                  37 non-null float64
Dwellings without basic facilities           37 non-null float64
Educational attainment                       37 non-null float64
Employees working very long hours            37 non-null float64
Employment rate                              37 non-null float64
Homicide rate                                37 non-null float64
Household net adjusted disposable income     37 non-null float64
Household net financial wealth               37 non-null float64
Housing expenditure                          37 non-null float64
Job security                                 37 non-null float64
Life expectancy                              37 non-null float64
Life satisfaction                            37 non-null float64
Long-term unemployment rate                  37 non-null float64
Personal earnings                            37 non-null float64
Quality of support network                   37 non-null float64
Rooms per person                             37 non-null float64
Self-reported health                         37 non-null float64
Student skills                               37 non-null float64
Time devoted to leisure and personal care    37 non-null float64
Voter turnout                                37 non-null float64
Water quality                                37 non-null float64
Years in education                           37 non-null float64
dtypes: float64(24)
memory usage: 7.2+ KB

GDP per capita

Source

Dataset obtained from the IMF's website at: http://goo.gl/j1MSKe

Data description

Int64Index: 190 entries, 0 to 189
Data columns (total 7 columns):
Country                          190 non-null object
Subject Descriptor               189 non-null object
Units                            189 non-null object
Scale                            189 non-null object
Country/Series-specific Notes    188 non-null object
2015                             187 non-null float64
Estimates Start After            188 non-null float64
dtypes: float64(2), object(5)
memory usage: 11.9+ KB

Example usage using python Pandas

>>> gdp_per_capita = pd.read_csv(
...     datapath+"gdp_per_capita.csv", thousands=',', delimiter='\t',
...     encoding='latin1', na_values="n/a", index_col="Country")
...
>>> gdp_per_capita.rename(columns={"2015": "GDP per capita"}, inplace=True)