Given an array nums
of size n
, return the majority element.
The majority element is the element that appears more than ⌊n / 2⌋
times. You may assume that the majority element always exists in the array.
Input: nums = [3,2,3]
Output: 3
Input: nums = [2,2,1,1,1,2,2]
Output: 2
n == nums.length
1 <= n <= 5 * 104
-109 <= nums[i] <= 109
Follow-up: Could you solve the problem in linear time and in O(1)
space?
Linear time
class Solution:
def majorityElement(self, nums: List[int]) -> int:
count = 0
candidate = 0
for num in nums:
if count == 0:
candidate = num
if num == candidate:
count += 1
else:
count -= 1
return candidate
function majorityElement(nums: number[]): number {
let count = 0;
let candidate = 0;
for (let num of nums) {
if (count === 0) {
candidate = num;
}
if (num === candidate) {
count++;
} else {
count--;
}
}
return candidate;
}
Sort
class Solution:
def majorityElement(self, nums: List[int]) -> int:
mid = len(nums) // 2
nums.sort()
return nums[mid]
function majorityElement(nums: number[]): number {
const n = nums.length;
nums.sort((a, b) => a - b);
const mid = Math.floor(n / 2);
return nums[mid];
}
Hash
class Solution:
def majorityElement(self, nums: List[int]) -> int:
hash = {}
for i in nums:
if i in hash:
hash[i] = hash[i] + 1
else:
hash[i] = 1
n = len(nums) // 2
for key, val in hash.items():
if val > n:
return key
class Solution {
public:
int majorityElement(vector<int>& nums) {
int major = nums[0];
int count = 1;
for (int i = 1; i < nums.size(); i++) {
if (count == 0) {
major = nums[i];
count++;
} else if (nums[i] == major) {
count++;
} else {
count--;
}
}
return major;
}
};
func majorityElement(nums []int) int {
count := 1
major := nums[0]
for _, num := range nums[1:] {
if count == 0 {
count = 1
major = num
} else if num == major {
count++
} else {
count--
}
}
return major
}
impl Solution {
pub fn majority_element(nums: Vec<i32>) -> i32 {
let mut count = 1;
let mut major = nums[0];
for i in 1..nums.len() {
if count <= 0 {
count = 1;
major = nums[i];
} else if nums[i] == major {
count += 1;
} else {
count -= 1;
}
}
return major;
}
}