You are given the root
of a full binary tree with the following properties:
- Leaf nodes have either the value
0
or1
, where0
representsFalse
and1
representsTrue
. - Non-leaf nodes have either the value
2
or3
, where2
represents the booleanOR
and3
represents the booleanAND
.
The evaluation of a node is as follows:
- If the node is a leaf node, the evaluation is the value of the node, i.e.
True
orFalse
. - Otherwise, evaluate the node's two children and apply the boolean operation of its value with the children's evaluations.
Return the boolean result of evaluating the root
node.
A full binary tree is a binary tree where each node has either 0
or 2
children.
A leaf node is a node that has zero children.
Input: root = [2,1,3,null,null,0,1]
Output: true
Explanation: The above diagram illustrates the evaluation process.
The AND node evaluates to False AND True = False.
The OR node evaluates to True OR False = True.
The root node evaluates to True, so we return true.
Input: root = [0]
Output: false
Explanation: The root node is a leaf node and it evaluates to false, so we return false.
- The number of nodes in the tree is in the range
[1, 1000]
. 0 <= Node.val <= 3
- Every node has either
0
or2
children. - Leaf nodes have a value of
0
or1
. - Non-leaf nodes have a value of
2
or3
.
-
Time complexity:
O(n)
-
Space complexity:
O(n)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def evaluateTree(self, root: Optional[TreeNode]) -> bool:
if root.val == 0 or root.val == 1:
return root.val == 1
elif root.val == 2:
return self.evaluateTree(root.left) or self.evaluateTree(root.right)
elif root.val == 3:
return self.evaluateTree(root.left) and self.evaluateTree(root.right)
return False
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean evaluateTree(TreeNode root) {
if (root.val == 0 || root.val == 1) {
return root.val == 1;
} else if (root.val == 2) {
return evaluateTree(root.left) || evaluateTree(root.right);
} else if (root.val == 3) {
return evaluateTree(root.left) && evaluateTree(root.right);
}
return false;
}
}
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func evaluateTree(root *TreeNode) bool {
if root.Val == 0 || root.Val == 1 {
return root.Val == 1
} else if root.Val == 2 {
return evaluateTree(root.Left) || evaluateTree(root.Right)
} else if root.Val == 3 {
return evaluateTree(root.Left) && evaluateTree(root.Right)
}
return false
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool evaluateTree(TreeNode* root) {
if (root -> val == 0 || root -> val == 1) {
return root -> val == 1;
} else if (root -> val == 2) {
return evaluateTree(root -> left) || evaluateTree(root -> right);
} else if (root -> val == 3) {
return evaluateTree(root -> left) && evaluateTree(root-> right);
}
return false;
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
bool evaluateTree(struct TreeNode* root) {
if (root->val == 0 || root->val == 1) {
return root->val == 1;
} else if (root->val == 2) {
return evaluateTree(root->left) || evaluateTree(root->right);
} else if (root->val == 3) {
return evaluateTree(root->left) && evaluateTree(root->right);
}
return false;
}