Given an array of intervals where intervals[i] = [starti, endi]
, merge all overlapping intervals, and return an array of the non-overlapping intervals that cover all the intervals in the input.
Input: intervals = [[1,3],[2,6],[8,10],[15,18]]
Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlap, merge them into [1,6].
Input: intervals = [[1,4],[4,5]]
Output: [[1,5]]
Explanation: Intervals [1,4] and [4,5] are considered overlapping.
1 <= intervals.length <= 10^4
intervals[i].length == 2
0 <= starti <= endi <= 10^4
function merge(intervals: number[][]): number[][] {
intervals.sort((a, b) => a[0] - b[0]);
const results: number[][] = [intervals[0]];
for (let interval of intervals) {
const recent = results[results.length - 1];
if (recent[1] >= interval[0]) {
recent[1] = Math.max(recent[1], interval[1]);
} else {
results.push(interval);
}
}
return results;
}
class Solution:
def merge(self, intervals: List[List[int]]) -> List[List[int]]:
intervals = sorted(intervals, key=lambda x: x[0])
res = [intervals[0]]
for interval in intervals:
prev = res[-1]
if prev[1] >= interval[0]:
prev[1] = max(interval[1], prev[1])
else:
res.append(interval)
return res
class Solution {
public int[][] merge(int[][] intervals) {
int n = intervals.length;
if (n <= 1)
return intervals;
Arrays.sort(intervals, (i1, i2) -> Integer.compare(i1[0], i2[0]));
Stack<int[]> res = new Stack<>();
res.add(intervals[0]);
for (int[] interval : intervals) {
int[] prev = res.peek();
if (prev[1] >= interval[0]) {
prev[1] = Math.max(prev[1], interval[1]);
} else {
res.add(interval);
}
}
return res.toArray(new int[res.size()][]);
}
}
class Solution {
public:
vector<vector<int>> merge(vector<vector<int>>& intervals) {
vector<vector<int>> res;
sort(intervals.begin(), intervals.end());
for (auto interval : intervals) {
if (res.empty() || res.back()[1] < interval[0]) {
res.push_back(interval);
} else {
res.back()[1] = max(res.back()[1], interval[1]);
}
}
return res;
}
static bool comp(vector<int> a, vector<int> b) { return a[0] > b[0]; }
};
func merge(intervals [][]int) [][]int {
var res [][]int
sort.Slice(intervals, func(i, j int) bool {
if len(intervals[i]) == 0 && len(intervals[j]) == 0 {
return false
}
if len(intervals[i]) == 0 || len(intervals[j]) == 0 {
return len(intervals[i]) == 0
}
return intervals[i][0] < intervals[j][0]
})
res = append(res, intervals[0])
for _, interval := range intervals {
n := len(res) - 1
if res[n][1] >= interval[0] {
res[n][1] = max(res[n][1], interval[1])
} else {
res = append(res, interval)
}
}
return res
}
func max(a int, b int) int {
if a > b {
return a
}
return b
}
/**
* Return an array of arrays of size *returnSize.
* The sizes of the arrays are returned as *returnColumnSizes array.
* Note: Both returned array and *columnSizes array must be malloced, assume
* caller calls free().
*/
int comp(const void* a, const void* b) {
return (*(int**)a)[0] - (*(int**)b)[0];
}
int** merge(int** intervals, int intervalsSize, int* intervalsColSize,
int* returnSize, int** returnColumnSizes) {
qsort(intervals, intervalsSize, sizeof(int*), comp);
int** stack = (int**)malloc(sizeof(int*) * intervalsSize);
stack[0] = intervals[0];
int top = 1;
for (int i = 1; i < intervalsSize; i++) {
if (intervals[i][0] <= stack[top - 1][1]) {
stack[top - 1][1] = intervals[i][1] > stack[top - 1][1]
? intervals[i][1]
: stack[top - 1][1];
} else {
stack[top++] = intervals[i];
}
}
*returnSize = top;
*returnColumnSizes = (int*)malloc(sizeof(int) * (*returnSize));
for (int i = 0; i < *returnSize; i++) {
(*returnColumnSizes)[i] = 2;
}
return stack;
}