forked from openvswitch/ovs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier.c
2342 lines (2056 loc) · 80.4 KB
/
classifier.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "classifier.h"
#include <errno.h>
#include <netinet/in.h>
#include "byte-order.h"
#include "dynamic-string.h"
#include "flow.h"
#include "hash.h"
#include "odp-util.h"
#include "ofp-util.h"
#include "ovs-thread.h"
#include "packets.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(classifier);
struct trie_node;
struct trie_ctx;
/* Ports trie depends on both ports sharing the same ovs_be32. */
#define TP_PORTS_OFS32 (offsetof(struct flow, tp_src) / 4)
BUILD_ASSERT_DECL(TP_PORTS_OFS32 == offsetof(struct flow, tp_dst) / 4);
/* Prefix trie for a 'field' */
struct cls_trie {
const struct mf_field *field; /* Trie field, or NULL. */
struct trie_node *root; /* NULL if none. */
};
struct cls_subtable_entry {
struct cls_subtable *subtable;
tag_type tag;
unsigned int max_priority;
};
struct cls_subtables {
size_t count; /* One past last valid array element. */
size_t alloc_size; /* Number of allocated elements. */
struct cls_subtable_entry *array;
};
enum {
CLS_MAX_INDICES = 3 /* Maximum number of lookup indices per subtable. */
};
struct cls_classifier {
int n_rules; /* Total number of rules. */
uint8_t n_flow_segments;
uint8_t flow_segments[CLS_MAX_INDICES]; /* Flow segment boundaries to use
* for staged lookup. */
struct hmap subtables_map; /* Contains "struct cls_subtable"s. */
struct cls_subtables subtables;
struct hmap partitions; /* Contains "struct cls_partition"s. */
struct cls_trie tries[CLS_MAX_TRIES]; /* Prefix tries. */
unsigned int n_tries;
};
/* A set of rules that all have the same fields wildcarded. */
struct cls_subtable {
struct hmap_node hmap_node; /* Within struct cls_classifier 'subtables_map'
* hmap. */
struct hmap rules; /* Contains "struct cls_rule"s. */
int n_rules; /* Number of rules, including duplicates. */
unsigned int max_priority; /* Max priority of any rule in the subtable. */
unsigned int max_count; /* Count of max_priority rules. */
tag_type tag; /* Tag generated from mask for partitioning. */
uint8_t n_indices; /* How many indices to use. */
uint8_t index_ofs[CLS_MAX_INDICES]; /* u32 flow segment boundaries. */
struct hindex indices[CLS_MAX_INDICES]; /* Staged lookup indices. */
unsigned int trie_plen[CLS_MAX_TRIES]; /* Trie prefix length in 'mask'. */
int ports_mask_len;
struct trie_node *ports_trie; /* NULL if none. */
struct minimask mask; /* Wildcards for fields. */
/* 'mask' must be the last field. */
};
/* Associates a metadata value (that is, a value of the OpenFlow 1.1+ metadata
* field) with tags for the "cls_subtable"s that contain rules that match that
* metadata value. */
struct cls_partition {
struct hmap_node hmap_node; /* In struct cls_classifier's 'partitions'
* hmap. */
ovs_be64 metadata; /* metadata value for this partition. */
tag_type tags; /* OR of each flow's cls_subtable tag. */
struct tag_tracker tracker; /* Tracks the bits in 'tags'. */
};
/* Internal representation of a rule in a "struct cls_subtable". */
struct cls_match {
struct cls_rule *cls_rule;
struct hindex_node index_nodes[CLS_MAX_INDICES]; /* Within subtable's
* 'indices'. */
struct hmap_node hmap_node; /* Within struct cls_subtable 'rules'. */
unsigned int priority; /* Larger numbers are higher priorities. */
struct cls_partition *partition;
struct list list; /* List of identical, lower-priority rules. */
struct miniflow flow; /* Matching rule. Mask is in the subtable. */
/* 'flow' must be the last field. */
};
static struct cls_match *
cls_match_alloc(struct cls_rule *rule)
{
int count = count_1bits(rule->match.flow.map);
struct cls_match *cls_match
= xmalloc(sizeof *cls_match - sizeof cls_match->flow.inline_values
+ MINIFLOW_VALUES_SIZE(count));
cls_match->cls_rule = rule;
miniflow_clone_inline(&cls_match->flow, &rule->match.flow, count);
cls_match->priority = rule->priority;
rule->cls_match = cls_match;
return cls_match;
}
static struct cls_subtable *find_subtable(const struct cls_classifier *,
const struct minimask *);
static struct cls_subtable *insert_subtable(struct cls_classifier *,
const struct minimask *);
static void destroy_subtable(struct cls_classifier *, struct cls_subtable *);
static void update_subtables_after_insertion(struct cls_classifier *,
struct cls_subtable *,
unsigned int new_priority);
static void update_subtables_after_removal(struct cls_classifier *,
struct cls_subtable *,
unsigned int del_priority);
static struct cls_match *find_match_wc(const struct cls_subtable *,
const struct flow *, struct trie_ctx *,
unsigned int n_tries,
struct flow_wildcards *);
static struct cls_match *find_equal(struct cls_subtable *,
const struct miniflow *, uint32_t hash);
static struct cls_match *insert_rule(struct cls_classifier *,
struct cls_subtable *, struct cls_rule *);
/* Iterates RULE over HEAD and all of the cls_rules on HEAD->list. */
#define FOR_EACH_RULE_IN_LIST(RULE, HEAD) \
for ((RULE) = (HEAD); (RULE) != NULL; (RULE) = next_rule_in_list(RULE))
#define FOR_EACH_RULE_IN_LIST_SAFE(RULE, NEXT, HEAD) \
for ((RULE) = (HEAD); \
(RULE) != NULL && ((NEXT) = next_rule_in_list(RULE), true); \
(RULE) = (NEXT))
static struct cls_match *next_rule_in_list__(struct cls_match *);
static struct cls_match *next_rule_in_list(struct cls_match *);
static unsigned int minimask_get_prefix_len(const struct minimask *,
const struct mf_field *);
static void trie_init(struct cls_classifier *, int trie_idx,
const struct mf_field *);
static unsigned int trie_lookup(const struct cls_trie *, const struct flow *,
unsigned int *checkbits);
static unsigned int trie_lookup_value(const struct trie_node *,
const ovs_be32 value[],
unsigned int *checkbits);
static void trie_destroy(struct trie_node *);
static void trie_insert(struct cls_trie *, const struct cls_rule *, int mlen);
static void trie_insert_prefix(struct trie_node **, const ovs_be32 *prefix,
int mlen);
static void trie_remove(struct cls_trie *, const struct cls_rule *, int mlen);
static void trie_remove_prefix(struct trie_node **, const ovs_be32 *prefix,
int mlen);
static void mask_set_prefix_bits(struct flow_wildcards *, uint8_t be32ofs,
unsigned int nbits);
static bool mask_prefix_bits_set(const struct flow_wildcards *,
uint8_t be32ofs, unsigned int nbits);
static void
cls_subtables_init(struct cls_subtables *subtables)
{
memset(subtables, 0, sizeof *subtables);
}
static void
cls_subtables_destroy(struct cls_subtables *subtables)
{
free(subtables->array);
memset(subtables, 0, sizeof *subtables);
}
/* Subtables insertion. */
static void
cls_subtables_push_back(struct cls_subtables *subtables,
struct cls_subtable_entry a)
{
if (subtables->count == subtables->alloc_size) {
subtables->array = x2nrealloc(subtables->array, &subtables->alloc_size,
sizeof a);
}
subtables->array[subtables->count++] = a;
}
/* Move subtable entry at 'from' to 'to', shifting the elements in between
* (including the one at 'to') accordingly. */
static inline void
cls_subtables_move(struct cls_subtable_entry *to,
struct cls_subtable_entry *from)
{
if (to != from) {
struct cls_subtable_entry temp = *from;
if (to > from) {
/* Shift entries (from,to] backwards to make space at 'to'. */
memmove(from, from + 1, (to - from) * sizeof *to);
} else {
/* Shift entries [to,from) forward to make space at 'to'. */
memmove(to + 1, to, (from - to) * sizeof *to);
}
*to = temp;
}
}
/* Subtables removal. */
static inline void
cls_subtables_remove(struct cls_subtables *subtables,
struct cls_subtable_entry *elem)
{
ssize_t size = (&subtables->array[subtables->count]
- (elem + 1)) * sizeof *elem;
if (size > 0) {
memmove(elem, elem + 1, size);
}
subtables->count--;
}
#define CLS_SUBTABLES_FOR_EACH(SUBTABLE, ITER, SUBTABLES) \
for ((ITER) = (SUBTABLES)->array; \
(ITER) < &(SUBTABLES)->array[(SUBTABLES)->count] \
&& OVS_LIKELY((SUBTABLE) = (ITER)->subtable); \
++(ITER))
#define CLS_SUBTABLES_FOR_EACH_CONTINUE(SUBTABLE, ITER, SUBTABLES) \
for (++(ITER); \
(ITER) < &(SUBTABLES)->array[(SUBTABLES)->count] \
&& OVS_LIKELY((SUBTABLE) = (ITER)->subtable); \
++(ITER))
#define CLS_SUBTABLES_FOR_EACH_REVERSE(SUBTABLE, ITER, SUBTABLES) \
for ((ITER) = &(SUBTABLES)->array[(SUBTABLES)->count]; \
(ITER) > (SUBTABLES)->array \
&& OVS_LIKELY((SUBTABLE) = (--(ITER))->subtable);)
static void
cls_subtables_verify(struct cls_subtables *subtables)
{
struct cls_subtable *table;
struct cls_subtable_entry *iter;
unsigned int priority = 0;
CLS_SUBTABLES_FOR_EACH_REVERSE (table, iter, subtables) {
if (iter->max_priority != table->max_priority) {
VLOG_WARN("Subtable %p has mismatching priority in cache (%u != %u)",
table, iter->max_priority, table->max_priority);
}
if (iter->max_priority < priority) {
VLOG_WARN("Subtable cache is out of order (%u < %u)",
iter->max_priority, priority);
}
priority = iter->max_priority;
}
}
static void
cls_subtables_reset(struct cls_classifier *cls)
{
struct cls_subtables old = cls->subtables;
struct cls_subtable *subtable;
VLOG_WARN("Resetting subtable cache.");
cls_subtables_verify(&cls->subtables);
cls_subtables_init(&cls->subtables);
HMAP_FOR_EACH (subtable, hmap_node, &cls->subtables_map) {
struct cls_match *head;
struct cls_subtable_entry elem;
struct cls_subtable *table;
struct cls_subtable_entry *iter, *from = NULL;
unsigned int new_max = 0;
unsigned int max_count = 0;
bool found;
/* Verify max_priority. */
HMAP_FOR_EACH (head, hmap_node, &subtable->rules) {
if (head->priority > new_max) {
new_max = head->priority;
max_count = 1;
} else if (head->priority == new_max) {
max_count++;
}
}
if (new_max != subtable->max_priority ||
max_count != subtable->max_count) {
VLOG_WARN("subtable %p (%u rules) has mismatching max_priority "
"(%u) or max_count (%u). Highest priority found was %u, "
"count: %u",
subtable, subtable->n_rules, subtable->max_priority,
subtable->max_count, new_max, max_count);
subtable->max_priority = new_max;
subtable->max_count = max_count;
}
/* Locate the subtable from the old cache. */
found = false;
CLS_SUBTABLES_FOR_EACH (table, iter, &old) {
if (table == subtable) {
if (iter->max_priority != new_max) {
VLOG_WARN("Subtable %p has wrong max priority (%u != %u) "
"in the old cache.",
subtable, iter->max_priority, new_max);
}
if (found) {
VLOG_WARN("Subtable %p duplicated in the old cache.",
subtable);
}
found = true;
}
}
if (!found) {
VLOG_WARN("Subtable %p not found from the old cache.", subtable);
}
elem.subtable = subtable;
elem.tag = subtable->tag;
elem.max_priority = subtable->max_priority;
cls_subtables_push_back(&cls->subtables, elem);
/* Possibly move 'subtable' earlier in the priority array. If
* we break out of the loop, then the subtable (at 'from')
* should be moved to the position right after the current
* element. If the loop terminates normally, then 'iter' will
* be at the first array element and we'll move the subtable
* to the front of the array. */
CLS_SUBTABLES_FOR_EACH_REVERSE (table, iter, &cls->subtables) {
if (table == subtable) {
from = iter; /* Locate the subtable as we go. */
} else if (table->max_priority >= new_max) {
ovs_assert(from != NULL);
iter++; /* After this. */
break;
}
}
/* Move subtable at 'from' to 'iter'. */
cls_subtables_move(iter, from);
}
/* Verify that the old and the new have the same size. */
if (old.count != cls->subtables.count) {
VLOG_WARN("subtables cache sizes differ: old (%"PRIuSIZE
") != new (%"PRIuSIZE").",
old.count, cls->subtables.count);
}
cls_subtables_destroy(&old);
cls_subtables_verify(&cls->subtables);
}
/* flow/miniflow/minimask/minimatch utilities.
* These are only used by the classifier, so place them here to allow
* for better optimization. */
static inline uint64_t
miniflow_get_map_in_range(const struct miniflow *miniflow,
uint8_t start, uint8_t end, unsigned int *offset)
{
uint64_t map = miniflow->map;
*offset = 0;
if (start > 0) {
uint64_t msk = (UINT64_C(1) << start) - 1; /* 'start' LSBs set */
*offset = count_1bits(map & msk);
map &= ~msk;
}
if (end < FLOW_U32S) {
uint64_t msk = (UINT64_C(1) << end) - 1; /* 'end' LSBs set */
map &= msk;
}
return map;
}
/* Returns a hash value for the bits of 'flow' where there are 1-bits in
* 'mask', given 'basis'.
*
* The hash values returned by this function are the same as those returned by
* miniflow_hash_in_minimask(), only the form of the arguments differ. */
static inline uint32_t
flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask,
uint32_t basis)
{
const uint32_t *mask_values = miniflow_get_u32_values(&mask->masks);
const uint32_t *flow_u32 = (const uint32_t *)flow;
const uint32_t *p = mask_values;
uint32_t hash;
uint64_t map;
hash = basis;
for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p++);
}
return mhash_finish(hash, (p - mask_values) * 4);
}
/* Returns a hash value for the bits of 'flow' where there are 1-bits in
* 'mask', given 'basis'.
*
* The hash values returned by this function are the same as those returned by
* flow_hash_in_minimask(), only the form of the arguments differ. */
static inline uint32_t
miniflow_hash_in_minimask(const struct miniflow *flow,
const struct minimask *mask, uint32_t basis)
{
const uint32_t *mask_values = miniflow_get_u32_values(&mask->masks);
const uint32_t *p = mask_values;
uint32_t hash = basis;
uint32_t flow_u32;
MINIFLOW_FOR_EACH_IN_MAP(flow_u32, flow, mask->masks.map) {
hash = mhash_add(hash, flow_u32 & *p++);
}
return mhash_finish(hash, (p - mask_values) * 4);
}
/* Returns a hash value for the bits of range [start, end) in 'flow',
* where there are 1-bits in 'mask', given 'hash'.
*
* The hash values returned by this function are the same as those returned by
* minimatch_hash_range(), only the form of the arguments differ. */
static inline uint32_t
flow_hash_in_minimask_range(const struct flow *flow,
const struct minimask *mask,
uint8_t start, uint8_t end, uint32_t *basis)
{
const uint32_t *mask_values = miniflow_get_u32_values(&mask->masks);
const uint32_t *flow_u32 = (const uint32_t *)flow;
unsigned int offset;
uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end,
&offset);
const uint32_t *p = mask_values + offset;
uint32_t hash = *basis;
for (; map; map = zero_rightmost_1bit(map)) {
hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p++);
}
*basis = hash; /* Allow continuation from the unfinished value. */
return mhash_finish(hash, (p - mask_values) * 4);
}
/* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask. */
static inline void
flow_wildcards_fold_minimask(struct flow_wildcards *wc,
const struct minimask *mask)
{
flow_union_with_miniflow(&wc->masks, &mask->masks);
}
/* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask
* in range [start, end). */
static inline void
flow_wildcards_fold_minimask_range(struct flow_wildcards *wc,
const struct minimask *mask,
uint8_t start, uint8_t end)
{
uint32_t *dst_u32 = (uint32_t *)&wc->masks;
unsigned int offset;
uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end,
&offset);
const uint32_t *p = miniflow_get_u32_values(&mask->masks) + offset;
for (; map; map = zero_rightmost_1bit(map)) {
dst_u32[raw_ctz(map)] |= *p++;
}
}
/* Returns a hash value for 'flow', given 'basis'. */
static inline uint32_t
miniflow_hash(const struct miniflow *flow, uint32_t basis)
{
const uint32_t *values = miniflow_get_u32_values(flow);
const uint32_t *p = values;
uint32_t hash = basis;
uint64_t hash_map = 0;
uint64_t map;
for (map = flow->map; map; map = zero_rightmost_1bit(map)) {
if (*p) {
hash = mhash_add(hash, *p);
hash_map |= rightmost_1bit(map);
}
p++;
}
hash = mhash_add(hash, hash_map);
hash = mhash_add(hash, hash_map >> 32);
return mhash_finish(hash, p - values);
}
/* Returns a hash value for 'mask', given 'basis'. */
static inline uint32_t
minimask_hash(const struct minimask *mask, uint32_t basis)
{
return miniflow_hash(&mask->masks, basis);
}
/* Returns a hash value for 'match', given 'basis'. */
static inline uint32_t
minimatch_hash(const struct minimatch *match, uint32_t basis)
{
return miniflow_hash(&match->flow, minimask_hash(&match->mask, basis));
}
/* Returns a hash value for the bits of range [start, end) in 'minimatch',
* given 'basis'.
*
* The hash values returned by this function are the same as those returned by
* flow_hash_in_minimask_range(), only the form of the arguments differ. */
static inline uint32_t
minimatch_hash_range(const struct minimatch *match, uint8_t start, uint8_t end,
uint32_t *basis)
{
unsigned int offset;
const uint32_t *p, *q;
uint32_t hash = *basis;
int n, i;
n = count_1bits(miniflow_get_map_in_range(&match->mask.masks, start, end,
&offset));
q = miniflow_get_u32_values(&match->mask.masks) + offset;
p = miniflow_get_u32_values(&match->flow) + offset;
for (i = 0; i < n; i++) {
hash = mhash_add(hash, p[i] & q[i]);
}
*basis = hash; /* Allow continuation from the unfinished value. */
return mhash_finish(hash, (offset + n) * 4);
}
/* cls_rule. */
/* Initializes 'rule' to match packets specified by 'match' at the given
* 'priority'. 'match' must satisfy the invariant described in the comment at
* the definition of struct match.
*
* The caller must eventually destroy 'rule' with cls_rule_destroy().
*
* (OpenFlow uses priorities between 0 and UINT16_MAX, inclusive, but
* internally Open vSwitch supports a wider range.) */
void
cls_rule_init(struct cls_rule *rule,
const struct match *match, unsigned int priority)
{
minimatch_init(&rule->match, match);
rule->priority = priority;
rule->cls_match = NULL;
}
/* Same as cls_rule_init() for initialization from a "struct minimatch". */
void
cls_rule_init_from_minimatch(struct cls_rule *rule,
const struct minimatch *match,
unsigned int priority)
{
minimatch_clone(&rule->match, match);
rule->priority = priority;
rule->cls_match = NULL;
}
/* Initializes 'dst' as a copy of 'src'.
*
* The caller must eventually destroy 'dst' with cls_rule_destroy(). */
void
cls_rule_clone(struct cls_rule *dst, const struct cls_rule *src)
{
minimatch_clone(&dst->match, &src->match);
dst->priority = src->priority;
dst->cls_match = NULL;
}
/* Initializes 'dst' with the data in 'src', destroying 'src'.
*
* The caller must eventually destroy 'dst' with cls_rule_destroy(). */
void
cls_rule_move(struct cls_rule *dst, struct cls_rule *src)
{
minimatch_move(&dst->match, &src->match);
dst->priority = src->priority;
dst->cls_match = NULL;
}
/* Frees memory referenced by 'rule'. Doesn't free 'rule' itself (it's
* normally embedded into a larger structure).
*
* ('rule' must not currently be in a classifier.) */
void
cls_rule_destroy(struct cls_rule *rule)
{
ovs_assert(!rule->cls_match);
minimatch_destroy(&rule->match);
}
/* Returns true if 'a' and 'b' match the same packets at the same priority,
* false if they differ in some way. */
bool
cls_rule_equal(const struct cls_rule *a, const struct cls_rule *b)
{
return a->priority == b->priority && minimatch_equal(&a->match, &b->match);
}
/* Returns a hash value for 'rule', folding in 'basis'. */
uint32_t
cls_rule_hash(const struct cls_rule *rule, uint32_t basis)
{
return minimatch_hash(&rule->match, hash_int(rule->priority, basis));
}
/* Appends a string describing 'rule' to 's'. */
void
cls_rule_format(const struct cls_rule *rule, struct ds *s)
{
minimatch_format(&rule->match, s, rule->priority);
}
/* Returns true if 'rule' matches every packet, false otherwise. */
bool
cls_rule_is_catchall(const struct cls_rule *rule)
{
return minimask_is_catchall(&rule->match.mask);
}
/* Initializes 'cls' as a classifier that initially contains no classification
* rules. */
void
classifier_init(struct classifier *cls_, const uint8_t *flow_segments)
{
struct cls_classifier *cls = xmalloc(sizeof *cls);
fat_rwlock_init(&cls_->rwlock);
cls_->cls = cls;
cls->n_rules = 0;
hmap_init(&cls->subtables_map);
cls_subtables_init(&cls->subtables);
hmap_init(&cls->partitions);
cls->n_flow_segments = 0;
if (flow_segments) {
while (cls->n_flow_segments < CLS_MAX_INDICES
&& *flow_segments < FLOW_U32S) {
cls->flow_segments[cls->n_flow_segments++] = *flow_segments++;
}
}
cls->n_tries = 0;
}
/* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
* caller's responsibility. */
void
classifier_destroy(struct classifier *cls_)
{
if (cls_) {
struct cls_classifier *cls = cls_->cls;
struct cls_subtable *partition, *next_partition;
struct cls_subtable *subtable, *next_subtable;
int i;
fat_rwlock_destroy(&cls_->rwlock);
if (!cls) {
return;
}
for (i = 0; i < cls->n_tries; i++) {
trie_destroy(cls->tries[i].root);
}
HMAP_FOR_EACH_SAFE (subtable, next_subtable, hmap_node,
&cls->subtables_map) {
destroy_subtable(cls, subtable);
}
hmap_destroy(&cls->subtables_map);
HMAP_FOR_EACH_SAFE (partition, next_partition, hmap_node,
&cls->partitions) {
hmap_remove(&cls->partitions, &partition->hmap_node);
free(partition);
}
hmap_destroy(&cls->partitions);
cls_subtables_destroy(&cls->subtables);
free(cls);
}
}
/* We use uint64_t as a set for the fields below. */
BUILD_ASSERT_DECL(MFF_N_IDS <= 64);
/* Set the fields for which prefix lookup should be performed. */
void
classifier_set_prefix_fields(struct classifier *cls_,
const enum mf_field_id *trie_fields,
unsigned int n_fields)
{
struct cls_classifier *cls = cls_->cls;
uint64_t fields = 0;
int i, trie;
for (i = 0, trie = 0; i < n_fields && trie < CLS_MAX_TRIES; i++) {
const struct mf_field *field = mf_from_id(trie_fields[i]);
if (field->flow_be32ofs < 0 || field->n_bits % 32) {
/* Incompatible field. This is the only place where we
* enforce these requirements, but the rest of the trie code
* depends on the flow_be32ofs to be non-negative and the
* field length to be a multiple of 32 bits. */
continue;
}
if (fields & (UINT64_C(1) << trie_fields[i])) {
/* Duplicate field, there is no need to build more than
* one index for any one field. */
continue;
}
fields |= UINT64_C(1) << trie_fields[i];
if (trie >= cls->n_tries || field != cls->tries[trie].field) {
trie_init(cls, trie, field);
}
trie++;
}
/* Destroy the rest. */
for (i = trie; i < cls->n_tries; i++) {
trie_init(cls, i, NULL);
}
cls->n_tries = trie;
}
static void
trie_init(struct cls_classifier *cls, int trie_idx,
const struct mf_field *field)
{
struct cls_trie *trie = &cls->tries[trie_idx];
struct cls_subtable *subtable;
struct cls_subtable_entry *iter;
if (trie_idx < cls->n_tries) {
trie_destroy(trie->root);
}
trie->root = NULL;
trie->field = field;
/* Add existing rules to the trie. */
CLS_SUBTABLES_FOR_EACH (subtable, iter, &cls->subtables) {
unsigned int plen;
plen = field ? minimask_get_prefix_len(&subtable->mask, field) : 0;
/* Initialize subtable's prefix length on this field. */
subtable->trie_plen[trie_idx] = plen;
if (plen) {
struct cls_match *head;
HMAP_FOR_EACH (head, hmap_node, &subtable->rules) {
struct cls_match *match;
FOR_EACH_RULE_IN_LIST (match, head) {
trie_insert(trie, match->cls_rule, plen);
}
}
}
}
}
/* Returns true if 'cls' contains no classification rules, false otherwise. */
bool
classifier_is_empty(const struct classifier *cls)
{
return cls->cls->n_rules == 0;
}
/* Returns the number of rules in 'cls'. */
int
classifier_count(const struct classifier *cls)
{
return cls->cls->n_rules;
}
static uint32_t
hash_metadata(ovs_be64 metadata_)
{
uint64_t metadata = (OVS_FORCE uint64_t) metadata_;
return hash_uint64(metadata);
}
static struct cls_partition *
find_partition(const struct cls_classifier *cls, ovs_be64 metadata,
uint32_t hash)
{
struct cls_partition *partition;
HMAP_FOR_EACH_IN_BUCKET (partition, hmap_node, hash, &cls->partitions) {
if (partition->metadata == metadata) {
return partition;
}
}
return NULL;
}
static struct cls_partition *
create_partition(struct cls_classifier *cls, struct cls_subtable *subtable,
ovs_be64 metadata)
{
uint32_t hash = hash_metadata(metadata);
struct cls_partition *partition = find_partition(cls, metadata, hash);
if (!partition) {
partition = xmalloc(sizeof *partition);
partition->metadata = metadata;
partition->tags = 0;
tag_tracker_init(&partition->tracker);
hmap_insert(&cls->partitions, &partition->hmap_node, hash);
}
tag_tracker_add(&partition->tracker, &partition->tags, subtable->tag);
return partition;
}
static inline ovs_be32 minimatch_get_ports(const struct minimatch *match)
{
/* Could optimize to use the same map if needed for fast path. */
return MINIFLOW_GET_BE32(&match->flow, tp_src)
& MINIFLOW_GET_BE32(&match->mask.masks, tp_src);
}
/* Inserts 'rule' into 'cls'. Until 'rule' is removed from 'cls', the caller
* must not modify or free it.
*
* If 'cls' already contains an identical rule (including wildcards, values of
* fixed fields, and priority), replaces the old rule by 'rule' and returns the
* rule that was replaced. The caller takes ownership of the returned rule and
* is thus responsible for destroying it with cls_rule_destroy(), freeing the
* memory block in which it resides, etc., as necessary.
*
* Returns NULL if 'cls' does not contain a rule with an identical key, after
* inserting the new rule. In this case, no rules are displaced by the new
* rule, even rules that cannot have any effect because the new rule matches a
* superset of their flows and has higher priority. */
struct cls_rule *
classifier_replace(struct classifier *cls_, struct cls_rule *rule)
{
struct cls_classifier *cls = cls_->cls;
struct cls_match *old_rule;
struct cls_subtable *subtable;
subtable = find_subtable(cls, &rule->match.mask);
if (!subtable) {
subtable = insert_subtable(cls, &rule->match.mask);
}
old_rule = insert_rule(cls, subtable, rule);
if (!old_rule) {
int i;
rule->cls_match->partition = NULL;
if (minimask_get_metadata_mask(&rule->match.mask) == OVS_BE64_MAX) {
ovs_be64 metadata = miniflow_get_metadata(&rule->match.flow);
rule->cls_match->partition = create_partition(cls, subtable,
metadata);
}
subtable->n_rules++;
cls->n_rules++;
for (i = 0; i < cls->n_tries; i++) {
if (subtable->trie_plen[i]) {
trie_insert(&cls->tries[i], rule, subtable->trie_plen[i]);
}
}
/* Ports trie. */
if (subtable->ports_mask_len) {
/* We mask the value to be inserted to always have the wildcarded
* bits in known (zero) state, so we can include them in comparison
* and they will always match (== their original value does not
* matter). */
ovs_be32 masked_ports = minimatch_get_ports(&rule->match);
trie_insert_prefix(&subtable->ports_trie, &masked_ports,
subtable->ports_mask_len);
}
return NULL;
} else {
struct cls_rule *old_cls_rule = old_rule->cls_rule;
rule->cls_match->partition = old_rule->partition;
old_cls_rule->cls_match = NULL;
free(old_rule);
return old_cls_rule;
}
}
/* Inserts 'rule' into 'cls'. Until 'rule' is removed from 'cls', the caller
* must not modify or free it.
*
* 'cls' must not contain an identical rule (including wildcards, values of
* fixed fields, and priority). Use classifier_find_rule_exactly() to find
* such a rule. */
void
classifier_insert(struct classifier *cls, struct cls_rule *rule)
{
struct cls_rule *displaced_rule = classifier_replace(cls, rule);
ovs_assert(!displaced_rule);
}
/* Removes 'rule' from 'cls'. It is the caller's responsibility to destroy
* 'rule' with cls_rule_destroy(), freeing the memory block in which 'rule'
* resides, etc., as necessary. */
void
classifier_remove(struct classifier *cls_, struct cls_rule *rule)
{
struct cls_classifier *cls = cls_->cls;
struct cls_partition *partition;
struct cls_match *cls_match = rule->cls_match;
struct cls_match *head;
struct cls_subtable *subtable;
int i;
ovs_assert(cls_match);
subtable = find_subtable(cls, &rule->match.mask);
ovs_assert(subtable);
if (subtable->ports_mask_len) {
ovs_be32 masked_ports = minimatch_get_ports(&rule->match);
trie_remove_prefix(&subtable->ports_trie,
&masked_ports, subtable->ports_mask_len);
}
for (i = 0; i < cls->n_tries; i++) {
if (subtable->trie_plen[i]) {
trie_remove(&cls->tries[i], rule, subtable->trie_plen[i]);
}
}
/* Remove rule node from indices. */
for (i = 0; i < subtable->n_indices; i++) {
hindex_remove(&subtable->indices[i], &cls_match->index_nodes[i]);
}
head = find_equal(subtable, &rule->match.flow, cls_match->hmap_node.hash);
if (head != cls_match) {
list_remove(&cls_match->list);
} else if (list_is_empty(&cls_match->list)) {
hmap_remove(&subtable->rules, &cls_match->hmap_node);
} else {
struct cls_match *next = CONTAINER_OF(cls_match->list.next,
struct cls_match, list);
list_remove(&cls_match->list);
hmap_replace(&subtable->rules, &cls_match->hmap_node,
&next->hmap_node);
}
partition = cls_match->partition;
if (partition) {
tag_tracker_subtract(&partition->tracker, &partition->tags,
subtable->tag);
if (!partition->tags) {
hmap_remove(&cls->partitions, &partition->hmap_node);
free(partition);
}
}
if (--subtable->n_rules == 0) {