forked from opencv/opencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdft.py
executable file
·120 lines (84 loc) · 2.8 KB
/
dft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python
'''
sample for disctrete fourier transform (dft)
USAGE:
dft.py <image_file>
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
import sys
def shift_dft(src, dst=None):
'''
Rearrange the quadrants of Fourier image so that the origin is at
the image center. Swaps quadrant 1 with 3, and 2 with 4.
src and dst arrays must be equal size & type
'''
if dst is None:
dst = np.empty(src.shape, src.dtype)
elif src.shape != dst.shape:
raise ValueError("src and dst must have equal sizes")
elif src.dtype != dst.dtype:
raise TypeError("src and dst must have equal types")
if src is dst:
ret = np.empty(src.shape, src.dtype)
else:
ret = dst
h, w = src.shape[:2]
cx1 = cx2 = w // 2
cy1 = cy2 = h // 2
# if the size is odd, then adjust the bottom/right quadrants
if w % 2 != 0:
cx2 += 1
if h % 2 != 0:
cy2 += 1
# swap quadrants
# swap q1 and q3
ret[h-cy1:, w-cx1:] = src[0:cy1 , 0:cx1 ] # q1 -> q3
ret[0:cy2 , 0:cx2 ] = src[h-cy2:, w-cx2:] # q3 -> q1
# swap q2 and q4
ret[0:cy2 , w-cx2:] = src[h-cy2:, 0:cx2 ] # q2 -> q4
ret[h-cy1:, 0:cx1 ] = src[0:cy1 , w-cx1:] # q4 -> q2
if src is dst:
dst[:,:] = ret
return dst
def main():
if len(sys.argv) > 1:
fname = sys.argv[1]
else:
fname = 'baboon.jpg'
print("usage : python dft.py <image_file>")
im = cv.imread(cv.samples.findFile(fname))
# convert to grayscale
im = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
h, w = im.shape[:2]
realInput = im.astype(np.float64)
# perform an optimally sized dft
dft_M = cv.getOptimalDFTSize(w)
dft_N = cv.getOptimalDFTSize(h)
# copy A to dft_A and pad dft_A with zeros
dft_A = np.zeros((dft_N, dft_M, 2), dtype=np.float64)
dft_A[:h, :w, 0] = realInput
# no need to pad bottom part of dft_A with zeros because of
# use of nonzeroRows parameter in cv.dft()
cv.dft(dft_A, dst=dft_A, nonzeroRows=h)
cv.imshow("win", im)
# Split fourier into real and imaginary parts
image_Re, image_Im = cv.split(dft_A)
# Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
magnitude = cv.sqrt(image_Re**2.0 + image_Im**2.0)
# Compute log(1 + Mag)
log_spectrum = cv.log(1.0 + magnitude)
# Rearrange the quadrants of Fourier image so that the origin is at
# the image center
shift_dft(log_spectrum, log_spectrum)
# normalize and display the results as rgb
cv.normalize(log_spectrum, log_spectrum, 0.0, 1.0, cv.NORM_MINMAX)
cv.imshow("magnitude", log_spectrum)
cv.waitKey(0)
print('Done')
if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()