forked from nathanknox/streaming-lakehouse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
06-streaming-upsert.py
288 lines (215 loc) · 9.26 KB
/
06-streaming-upsert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Databricks notebook source
# MAGIC
# MAGIC %md-sandbox
# MAGIC
# MAGIC <div style="text-align: center; line-height: 0; padding-top: 9px;">
# MAGIC <img src="https://databricks.com/wp-content/uploads/2018/03/db-academy-rgb-1200px.png" alt="Databricks Learning" style="width: 600px">
# MAGIC </div>
# COMMAND ----------
# MAGIC %md
# MAGIC # Streaming Upserts with Delta Lake
# MAGIC
# MAGIC Delta Lake ACID compliance enables many operations to take place in the data lake that would normally require a data warehouse. Delta Lake provides `MERGE` syntax to complete updates, deletes, and inserts as a single transaction.
# MAGIC
# MAGIC This demo will focus on applying this merge logic to a streaming pipeline.
# MAGIC
# MAGIC ## Learning Objectives
# MAGIC By the end of this lesson, students will be able to:
# MAGIC * Use `foreachBatch` to apply a custom writer function to a Structured Stream
# MAGIC * Define an upsert statement using Spark SQL
# MAGIC * Define an upsert statement using the Python Delta Lake APIs
# MAGIC
# MAGIC ## Our Data
# MAGIC
# MAGIC Both the source and sink tables have already been defined for this demo.
# MAGIC
# MAGIC ### Bronze Table
# MAGIC Here we store all records as consumed. A row represents:
# MAGIC 1. A new patient providing data for the first time
# MAGIC 1. An existing patient confirming that their information is still correct
# MAGIC 1. An existing patient updating some of their information
# MAGIC
# MAGIC The type of action a row represents is not captured, and each user may have many records present. The field `mrn` serves as the unique identifier.
# MAGIC
# MAGIC ### Silver Table
# MAGIC This is the validated view of our data. Each patient will appear only once in this table. An upsert statement will be used to identify rows that have changed.
# COMMAND ----------
# MAGIC %md
# MAGIC ### Setup
# MAGIC
# MAGIC The following code defines some paths, a demo database, and clears out previous runs of the demo. A helper class is also loaded to the variable `Bronze` to allow us to trigger new data arriving in our `bronze` table.
# COMMAND ----------
# MAGIC %run ./Includes/upsert-setup
# COMMAND ----------
# MAGIC %md
# MAGIC ### Review Bronze Data
# MAGIC Land a batch of data and display our table.
# COMMAND ----------
Bronze.arrival()
display(spark.sql(f"SELECT * FROM delta.`{bronzePath}`"))
# COMMAND ----------
# MAGIC %md
# MAGIC ## Using `foreachBatch` with Structured Streaming
# MAGIC
# MAGIC The Spark Structured Streaming `foreachBatch` method allows users to define custom logic when writing.
# MAGIC
# MAGIC The logic applied during `foreachBatch` addresses the present microbatch as if it were a batch (rather than streaming) data. This means that no checkpoint is required for these streams, and that these streams are not stateful.
# MAGIC
# MAGIC At this time, Delta Lake `merge` logic does not have a native writer in Spark Structured Streaming, so this logic must be implemented by applying a custom function within `foreachBatch`.
# MAGIC
# MAGIC All functions follow the same basic format:
# COMMAND ----------
def exampleFunction(microBatchDF, batchID):
microBatchDF #<do something>
# COMMAND ----------
# MAGIC %md
# MAGIC The `microBatchD` argument will be used to capture and manipulate the current microbatch of data as a Spark DataFrame. The `batchID` identifies the microbatch, but can be ignored by your custom writer (but is a necessary argument for `foreachBatch` to work).
# COMMAND ----------
# MAGIC %md
# MAGIC ## Defining a Streaming Upsert with Spark SQL
# MAGIC
# MAGIC The cell below demonstrates using Spark SQL to define a function suitable for performing a streaming upsert. A few things to note:
# MAGIC 1. We can only merge into Delta tables (`silver` is an existing Delta table)
# MAGIC 1. `createOrReplaceTempView` allows us to create a local view to refer to our microbatch data (`stream_batch` is later referenced in our SQL query)
# MAGIC 1. `WHEN MATCHED` is analyzed before our additional conditions (all of the `OR` statements are evaluated together, and applied with a single `AND`)
# MAGIC
# MAGIC The code below will update all values if a record with the same `mrn` exists and any values have changed, or insert all values if the record has not been seen. Records with no changes will be silently ignored.
# COMMAND ----------
def upsertToDeltaSQL(microBatchDF, batch):
microBatchDF.createOrReplaceTempView("stream_batch")
microBatchDF._jdf.sparkSession().sql("""
MERGE INTO silver t
USING stream_batch s
ON s.mrn = t.mrn
WHEN MATCHED AND
s.dob <> t.dob OR
s.sex <> t.sex OR
s.gender <> t.gender OR
s.first_name <> t.first_name OR
s.last_name <> t.last_name OR
s.street_address <> t.street_address OR
s.zip <> t.zip OR
s.city <> t.city OR
s.state <> t.state OR
s.updated <> t.updated
THEN UPDATE SET *
WHEN NOT MATCHED
THEN INSERT *
""")
# COMMAND ----------
# MAGIC %md
# MAGIC Define a streaming reading against the bronze Delta table.
# COMMAND ----------
bronzeDF = (spark.readStream
.format("delta")
.load(bronzePath))
# COMMAND ----------
# MAGIC %md
# MAGIC Use `foreachBatch` to apply our method to each microbatch in our structured stream.
# COMMAND ----------
(bronzeDF.writeStream
.format("delta")
.foreachBatch(upsertToDeltaSQL)
.outputMode("update")
# .trigger(once=True)
.trigger(processingTime='2 seconds')
.start())
# COMMAND ----------
# MAGIC %md
# MAGIC Run the following query to see the newest updated records first.
# COMMAND ----------
# MAGIC %sql
# MAGIC SELECT *
# MAGIC FROM silver
# MAGIC ORDER BY updated DESC
# COMMAND ----------
# MAGIC %md
# MAGIC Land new data in the `bronze` table and track progress through your streaming query above.
# COMMAND ----------
Bronze.arrival()
# COMMAND ----------
# MAGIC %md
# MAGIC Now you should be able to see new data inserted and updated in your table.
# COMMAND ----------
# MAGIC %sql
# MAGIC SELECT *
# MAGIC FROM silver
# MAGIC ORDER BY updated DESC
# COMMAND ----------
# MAGIC %md
# MAGIC Stop your stream before continuing.
# COMMAND ----------
for stream in spark.streams.active:
stream.stop()
# COMMAND ----------
# MAGIC %md
# MAGIC ## Defining a Streaming Upsert with Python Delta APIs
# MAGIC Delta Lake has a full set of Python APIs that can also be used for performing operations. Again, `foreachBatch` must be used to apply `merge` logic with Structured Streaming.
# MAGIC
# MAGIC Note that the logic below is identical to our previous SQL query.
# MAGIC
# MAGIC As before, our upsert is defined in reference to our target `silver` table. As such, the code below begins by loading the `silver` Delta table using the API.
# MAGIC
# MAGIC We can see the same conditional logic used to specify which matched records should be updated.
# COMMAND ----------
from delta.tables import *
silver_table = DeltaTable.forPath(spark, silverPath)
def upsertToDelta(microBatchDF, batchId):
(silver_table.alias("t").merge(
microBatchDF.alias("s"),
"s.mrn = t.mrn")
.whenMatchedUpdateAll(
condition = """s.dob <> t.dob OR
s.sex <> t.sex OR
s.gender <> t.gender OR
s.first_name <> t.first_name OR
s.last_name <> t.last_name OR
s.street_address <> t.street_address OR
s.zip <> t.zip OR
s.city <> t.city OR
s.state <> t.state OR
s.updated <> t.updated""")
.whenNotMatchedInsertAll()
.execute())
# COMMAND ----------
# MAGIC %md
# MAGIC The code below applies our Python `merge` logic with a streaming write.
# COMMAND ----------
(bronzeDF.writeStream
.format("delta")
.foreachBatch(upsertToDelta)
.outputMode("update")
# .trigger(once=True)
.trigger(processingTime='2 seconds')
.start())
# COMMAND ----------
# MAGIC %md
# MAGIC Land more data in the `bronze` table.
# COMMAND ----------
Bronze.arrival()
# COMMAND ----------
# MAGIC %md
# MAGIC Once your batch has processed, run the cell below to see newly updated rows.
# COMMAND ----------
# MAGIC %sql
# MAGIC SELECT *
# MAGIC FROM silver
# MAGIC ORDER BY updated DESC
# COMMAND ----------
# MAGIC %md
# MAGIC Using `DESCRIBE HISTORY`, we can review the logic applied during our merge statements, as well as check the metrics for number of rows inserted and updated with each write.
# COMMAND ----------
# MAGIC %sql
# MAGIC DESCRIBE HISTORY silver
# COMMAND ----------
# MAGIC %md
# MAGIC Make sure you stop all streams before continuing to the next notebook.
# COMMAND ----------
for stream in spark.streams.active:
stream.stop()
# COMMAND ----------
# MAGIC %md-sandbox
# MAGIC © 2021 Databricks, Inc. All rights reserved.<br/>
# MAGIC Apache, Apache Spark, Spark and the Spark logo are trademarks of the <a href="http://www.apache.org/">Apache Software Foundation</a>.<br/>
# MAGIC <br/>
# MAGIC <a href="https://databricks.com/privacy-policy">Privacy Policy</a> | <a href="https://databricks.com/terms-of-use">Terms of Use</a> | <a href="http://help.databricks.com/">Support</a>