forked from richardcochran/linuxptp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sysoff.c
182 lines (162 loc) · 4.61 KB
/
sysoff.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/**
* @file sysoff.c
* @brief Implements the system offset estimation method.
* @note Copyright (C) 2012 Richard Cochran <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdio.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/ptp_clock.h>
#include "print.h"
#include "sysoff.h"
#define NS_PER_SEC 1000000000LL
#ifdef PTP_SYS_OFFSET
static int64_t pctns(struct ptp_clock_time *t)
{
return t->sec * NS_PER_SEC + t->nsec;
}
static struct {
int64_t interval;
int64_t offset;
uint64_t timestamp;
} samples[PTP_MAX_SAMPLES];
static int sysoff_precise(int fd, int64_t *result, uint64_t *ts)
{
#ifdef PTP_SYS_OFFSET_PRECISE
struct ptp_sys_offset_precise pso;
memset(&pso, 0, sizeof(pso));
if (ioctl(fd, PTP_SYS_OFFSET_PRECISE, &pso)) {
pr_debug("ioctl PTP_SYS_OFFSET_PRECISE: %m");
return SYSOFF_RUN_TIME_MISSING;
}
*result = pctns(&pso.sys_realtime) - pctns(&pso.device);
*ts = pctns(&pso.sys_realtime);
return SYSOFF_PRECISE;
#else
return SYSOFF_COMPILE_TIME_MISSING;
#endif
}
static void insertion_sort(int length, int64_t interval, int64_t offset, uint64_t ts)
{
int i = length - 1;
while (i >= 0) {
if (samples[i].interval < interval)
break;
samples[i+1] = samples[i];
i--;
}
samples[i+1].interval = interval;
samples[i+1].offset = offset;
samples[i+1].timestamp = ts;
}
static int64_t sysoff_estimate(struct ptp_clock_time *pct, int extended,
int n_samples, uint64_t *ts, int64_t *delay)
{
int64_t t1, t2, tp;
int64_t interval, offset;
int i;
for (i = 0; i < n_samples; i++) {
if (extended) {
t1 = pctns(&pct[3*i]);
tp = pctns(&pct[3*i+1]);
t2 = pctns(&pct[3*i+2]);
} else {
t1 = pctns(&pct[2*i]);
tp = pctns(&pct[2*i+1]);
t2 = pctns(&pct[2*i+2]);
}
interval = t2 - t1;
offset = (t2 + t1) / 2 - tp;
insertion_sort(i, interval, offset, (t2 + t1) / 2);
}
*ts = samples[0].timestamp;
*delay = samples[0].interval;
return samples[0].offset;
}
static int sysoff_extended(int fd, int n_samples,
int64_t *result, uint64_t *ts, int64_t *delay)
{
#ifdef PTP_SYS_OFFSET_EXTENDED
struct ptp_sys_offset_extended pso;
memset(&pso, 0, sizeof(pso));
pso.n_samples = n_samples;
if (ioctl(fd, PTP_SYS_OFFSET_EXTENDED, &pso)) {
pr_debug("ioctl PTP_SYS_OFFSET_EXTENDED: %m");
return SYSOFF_RUN_TIME_MISSING;
}
*result = sysoff_estimate(&pso.ts[0][0], 1, n_samples, ts, delay);
return SYSOFF_EXTENDED;
#else
return SYSOFF_COMPILE_TIME_MISSING;
#endif
}
static int sysoff_basic(int fd, int n_samples,
int64_t *result, uint64_t *ts, int64_t *delay)
{
struct ptp_sys_offset pso;
memset(&pso, 0, sizeof(pso));
pso.n_samples = n_samples;
if (ioctl(fd, PTP_SYS_OFFSET, &pso)) {
perror("ioctl PTP_SYS_OFFSET");
return SYSOFF_RUN_TIME_MISSING;
}
*result = sysoff_estimate(pso.ts, 0, n_samples, ts, delay);
return SYSOFF_BASIC;
}
int sysoff_measure(int fd, int method, int n_samples,
int64_t *result, uint64_t *ts, int64_t *delay)
{
switch (method) {
case SYSOFF_PRECISE:
*delay = 0;
return sysoff_precise(fd, result, ts);
case SYSOFF_EXTENDED:
return sysoff_extended(fd, n_samples, result, ts, delay);
case SYSOFF_BASIC:
return sysoff_basic(fd, n_samples, result, ts, delay);
}
return SYSOFF_COMPILE_TIME_MISSING;
}
int sysoff_probe(int fd, int n_samples)
{
int64_t junk, delay;
uint64_t ts;
int i;
if (n_samples > PTP_MAX_SAMPLES) {
fprintf(stderr, "warning: %d exceeds kernel max readings %d\n",
n_samples, PTP_MAX_SAMPLES);
fprintf(stderr, "falling back to clock_gettime method\n");
return SYSOFF_RUN_TIME_MISSING;
}
for (i = 0; i < SYSOFF_LAST; i++) {
if (sysoff_measure(fd, i, n_samples, &junk, &ts, &delay) < 0)
continue;
return i;
}
return SYSOFF_RUN_TIME_MISSING;
}
#else /* !PTP_SYS_OFFSET */
int sysoff_measure(int fd, int n_samples,
int64_t *result, uint64_t *ts, int64_t *delay)
{
return SYSOFF_COMPILE_TIME_MISSING;
}
int sysoff_probe(int fd, int n_samples)
{
return SYSOFF_COMPILE_TIME_MISSING;
}
#endif /* PTP_SYS_OFFSET */