forked from atenpas/gpd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net_zarr.py
206 lines (173 loc) · 6.54 KB
/
train_net_zarr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Use tensors to speed up loading data onto the GPU during training.
import zarr
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as torchdata
import torch.multiprocessing
import sys
#torch.multiprocessing.set_start_method('spawn')
class ZarrDataset(torchdata.Dataset):
def __init__(self, file_path, start_idx, end_idx):
super(ZarrDataset, self).__init__()
f = zarr.open(file_path, 'r')
self.data = torch.from_numpy(np.array(f.get('images')[start_idx : end_idx]))
print(self.data.dtype)
self.target = torch.from_numpy(np.array(f.get('labels')[start_idx : end_idx])).to(torch.int32) #.astype('int32'))
print("Loaded data")
def __getitem__(self, index):
image = self.data[index,:,:].to(torch.float32) * 1/256.0
# Pytorch uses NCHW format
image = image.reshape((image.shape[2], image.shape[0], image.shape[1]))
target = self.target[index,:][0]
return (image, target)
def __len__(self):
return self.data.shape[0]
class Net(nn.Module):
def __init__(self, input_channels):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(input_channels, 20, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(20, 50, 5)
# self.drop2d = nn.Dropout2d(p=0.2)
self.fc1 = nn.Linear(50 * 12 * 12, 500)
# self.drop1 = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(500, 2)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
# x = self.pool(F.relu(self.drop2d(self.conv2(x))))
x = x.view(-1, x.shape[1] * x.shape[2] * x.shape[3])
x = F.relu(self.fc1(x))
# x = self.drop1(x)
x = self.fc2(x)
return x
def train(model, criterion, optimizer, data, device):
# Get the inputs and transfer them to the CPU/GPU.
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
# Reset the parameter gradients.
optimizer.zero_grad()
# Forward + backward + optimize.
outputs = model(inputs)
loss = criterion(outputs, labels.long())
loss.backward()
optimizer.step()
return loss
def eval(model, test_loader, device):
model.eval()
correct = 0
total = 0
print('Testing the network on the test data ...')
with torch.no_grad():
for data in test_loader:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
# Forward
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels.long()).sum().item()
accuracy = 100.0 * float(correct) / float(total)
print('Accuracy of the network on the test set: %.3f%%' % (
accuracy))
return accuracy
if len(sys.argv) < 3:
print('ERROR: Not enough input arguments!')
print('Usage: python train_net3.py pathToTrainingSet.h5 pathToTestSet.h5')
exit(-1)
f = zarr.open(sys.argv[1], 'r')
num_train = len(f['images'])
num_epochs = 5
max_in_memory = 120000
repeats = 1
early_stop_loss = 0.0000001
start_idx = 0
end_idx = max_in_memory
iter_per_epoch = int(np.ceil(num_train / float(max_in_memory)))
indices = np.arange(0, num_train, max_in_memory)
indices = list(indices) + [num_train]
print('iter_per_epoch:', iter_per_epoch)
print(indices)
test_set = ZarrDataset(sys.argv[2], 0, 20000)
test_loader = torchdata.DataLoader(test_set, batch_size=64, shuffle=True, num_workers=4)
# Use GPU.
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('device:', device)
# Create the network.
net = Net(test_set.data.shape[-1])
print('Copying network to GPU ...')
net.to(device)
print(net)
# Define the loss function and optimizer.
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.0001, momentum=0.9, weight_decay=0.0005)
# optimizer = optim.Adam(net.parameters(), lr=0.001, weight_decay=0.001)
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.96)
accuracy = eval(net, test_loader, device)
accuracies = []
accuracies.append(accuracy)
early_stop = False
losses = []
loss = None
print('Training ...')
for epoch in range(num_epochs):
print('epoch: %d/%d' % (epoch + 1, num_epochs))
net.train()
# scheduler.step()
for param_group in optimizer.param_groups:
print('learning rate:', param_group['lr'])
for j in range(iter_per_epoch):
print('Iteration: %d/%d' % (j + 1, iter_per_epoch))
print('Loading data block [%d, %d] ...' % (indices[j], indices[j + 1]))
dset = []
train_loader = []
dset = ZarrDataset(sys.argv[1], indices[j], indices[j + 1])
train_loader = torchdata.DataLoader(dset, batch_size=64, shuffle=True, num_workers=4)
running_loss = 0.0
for r in range(repeats):
if r > 1:
print('Repeat: %d/%d' % (r + 1, repeats))
for i, data in enumerate(train_loader):
loss = train(net, criterion, optimizer, data, device)
# print statistics
running_loss += loss.item()
if i % 200 == 199:
print('Epoch: %d, batch: %5d, loss: %.5f' %
(epoch + 1, i + 1, running_loss / 1000))
losses.append(running_loss)
if running_loss / 1000 < early_stop_loss:
print('Reached loss threshold for early stopping: %.5f', early_stop_loss)
early_stop = True
break
running_loss = 0.0
# Evaluate the network on the test dataset.
accuracy = eval(net, test_loader, device)
accuracies.append(accuracy)
model_path = 'model_' + str(accuracy) + '.pwf'
torch.save(net.state_dict(), model_path)
net.train()
if early_stop:
break
if early_stop:
break
if early_stop:
break
# Evaluate the network on the test dataset.
accuracy = eval(net, test_loader, device)
accuracies.append(accuracy)
model_path = 'model_' + str(accuracy) + '.pwf'
torch.save(net.state_dict(), model_path)
print('Finished Training')
model_path = 'model.pwf'
torch.save(net.state_dict(), model_path)
with open('loss_stats.txt', 'w') as f:
for l in losses:
f.write("%s\n" % str(l))
with open('accuracy_stats.txt', 'w') as f:
for a in accuracies:
f.write("%s\n" % str(a))