forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcusparse_kernels.cc
597 lines (524 loc) · 22 KB
/
cusparse_kernels.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/* Copyright 2021 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "jaxlib/cusparse_kernels.h"
#include <algorithm>
#include <cstdint>
#include <stdexcept>
#include <utility>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/synchronization/mutex.h"
#include "third_party/gpus/cuda/include/cuComplex.h"
#include "third_party/gpus/cuda/include/cuda.h"
#include "third_party/gpus/cuda/include/cuda_runtime_api.h"
#include "third_party/gpus/cuda/include/cusparse.h"
#include "jaxlib/cuda_gpu_kernel_helpers.h"
#include "jaxlib/handle_pool.h"
#include "jaxlib/kernel_helpers.h"
#include "tensorflow/compiler/xla/service/custom_call_status.h"
// cuSPARSE generic APIs are not supported on Windows until 11.0
// cusparseIndexType_t is used in very limited scope so manually define will
// workaround compiling issue without harm.
#if defined(_WIN32) && (CUSPARSE_VERSION < 11000)
typedef enum {
CUSPARSE_INDEX_16U = 1,
CUSPARSE_INDEX_32I = 2,
CUSPARSE_INDEX_64I = 3
} cusparseIndexType_t;
#endif
namespace jax {
template <>
/*static*/ absl::StatusOr<SparseHandlePool::Handle> SparseHandlePool::Borrow(
cudaStream_t stream) {
SparseHandlePool* pool = Instance();
absl::MutexLock lock(&pool->mu_);
cusparseHandle_t handle;
if (pool->handles_[stream].empty()) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreate(&handle)));
} else {
handle = pool->handles_[stream].back();
pool->handles_[stream].pop_back();
}
if (stream) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseSetStream(handle, stream)));
}
return Handle(pool, handle, stream);
}
CudaConst CudaZero(cudaDataType type) {
CudaConst c;
std::memset(&c, 0, sizeof(c));
return c;
}
CudaConst CudaOne(cudaDataType type) {
CudaConst c;
std::memset(&c, 0, sizeof(c));
switch (type) {
#if JAX_CUSPARSE_11300
// TODO(jakevdp): 4I/4U here might break on big endian platforms.
case CUDA_R_4I:
case CUDA_C_4I:
#endif
case CUDA_R_8I:
case CUDA_C_8I:
c.i8[0] = 1;
break;
#if JAX_CUSPARSE_11300
case CUDA_R_4U:
case CUDA_C_4U:
#endif
case CUDA_R_8U:
case CUDA_C_8U:
c.u8[0] = 1;
break;
#if JAX_CUSPARSE_11300
case CUDA_R_16I:
case CUDA_C_16I:
c.i16[0] = 1;
break;
case CUDA_R_16U:
case CUDA_C_16U:
c.u16[0] = 1;
break;
#endif
case CUDA_R_32I:
case CUDA_C_32I:
c.i32[0] = 1;
break;
case CUDA_R_32U:
case CUDA_C_32U:
c.u32[0] = 1;
break;
#if JAX_CUSPARSE_11300
case CUDA_R_64I:
case CUDA_C_64I:
c.i64[0] = 1;
break;
case CUDA_R_64U:
case CUDA_C_64U:
c.u64[0] = 1;
break;
#endif
// TODO(jakevdp): 16F/16BF here might break on big endian platforms.
case CUDA_R_16F:
case CUDA_C_16F:
c.u16[0] = 0b11110000000000; // 1.0 in little-endian float16
break;
#if JAX_CUSPARSE_11300
case CUDA_R_16BF:
case CUDA_C_16BF:
c.u16[0] = 0b11111110000000; // 1.0 in little-endian bfloat16
break;
#endif
case CUDA_R_32F:
case CUDA_C_32F:
c.f32[0] = 1.0;
break;
case CUDA_R_64F:
case CUDA_C_64F:
c.f64[0] = 1.0;
break;
}
return c;
}
#if JAX_CUSPARSE_11300
// CsrToDense: Convert CSR matrix to dense matrix
static absl::Status CsrToDense_(cudaStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const SparseMatDescriptor& d = **s;
auto h = SparseHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
cusparseSpMatDescr_t mat_a = 0;
cusparseDnMatDescr_t mat_b = 0;
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
cusparseCreateCsr(&mat_a, d.rows, d.cols, d.nnz,
/*csrRowOffsets=*/buffers[2],
/*csrColInd=*/buffers[1],
/*csrValues=*/buffers[0], d.index_type, d.index_type,
CUSPARSE_INDEX_BASE_ZERO, d.value_type)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
&mat_b, d.rows, d.cols,
/*ld=*/d.cols, buffers[3], d.value_type, CUSPARSE_ORDER_ROW)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
cusparseSparseToDense(handle.get(), mat_a, mat_b,
CUSPARSE_SPARSETODENSE_ALG_DEFAULT, buffers[4])));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_b)));
return absl::OkStatus();
}
void CsrToDense(cudaStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = CsrToDense_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// CsrFromDense: Convert dense matrix to CSR matrix
static absl::Status CsrFromDense_(cudaStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const SparseMatDescriptor& d = **s;
auto h = SparseHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
cusparseDnMatDescr_t mat_a = 0;
cusparseSpMatDescr_t mat_b = 0;
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
&mat_a, d.rows, d.cols,
/*ld=*/d.cols, buffers[0], d.value_type, CUSPARSE_ORDER_ROW)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
cusparseCreateCsr(&mat_b, d.rows, d.cols, d.nnz,
/*csrRowOffsets=*/buffers[3],
/*csrColInd=*/buffers[2],
/*csrValues=*/buffers[1], d.index_type, d.index_type,
CUSPARSE_INDEX_BASE_ZERO, d.value_type)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDenseToSparse_analysis(
handle.get(), mat_a, mat_b, CUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
buffers[4])));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDenseToSparse_convert(
handle.get(), mat_a, mat_b, CUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
buffers[4])));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_a)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_b)));
return absl::OkStatus();
}
void CsrFromDense(cudaStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = CsrFromDense_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// CsrMatvec: Product of CSR matrix and dense vector.
static absl::Status CsrMatvec_(cudaStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<CsrMatvecDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const CsrMatvecDescriptor& d = **s;
auto h = SparseHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
void* csr_values = buffers[0];
void* csr_col_ind = buffers[1];
void* csr_row_offsets = buffers[2];
void* xbuf = buffers[3];
void* ybuf = buffers[4];
void* buf = buffers[5];
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
// are sufficient for basic matvec operations.
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
// or else the operation will segfault.
CudaConst alpha = CudaOne(d.y.type);
CudaConst beta = CudaZero(d.y.type);
cusparseSpMatDescr_t mat_a = 0;
cusparseDnVecDescr_t vec_x = 0;
cusparseDnVecDescr_t vec_y = 0;
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
cusparseCreateCsr(&mat_a, d.A.rows, d.A.cols, d.A.nnz, csr_row_offsets,
csr_col_ind, csr_values, d.A.index_type, d.A.index_type,
CUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
JAX_RETURN_IF_ERROR(
JAX_AS_STATUS(cusparseCreateDnVec(&vec_x, d.x.size, xbuf, d.x.type)));
JAX_RETURN_IF_ERROR(
JAX_AS_STATUS(cusparseCreateDnVec(&vec_y, d.y.size, ybuf, d.y.type)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
cusparseSpMV(handle.get(), d.op, &alpha, mat_a, vec_x, &beta, vec_y,
d.y.type, CUSPARSE_MV_ALG_DEFAULT, buf)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnVec(vec_x)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnVec(vec_y)));
return absl::OkStatus();
}
void CsrMatvec(cudaStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = CsrMatvec_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// CsrMatmat: Product of CSR matrix and dense matrix.
static absl::Status CsrMatmat_(cudaStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<CsrMatmatDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const CsrMatmatDescriptor& d = **s;
auto h = SparseHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
void* csr_values = buffers[0];
void* csr_col_ind = buffers[1];
void* csr_row_offsets = buffers[2];
void* Bbuf = buffers[3];
void* Cbuf = buffers[4];
void* buf = buffers[5];
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
// are sufficient for basic matvec operations.
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
// or else the operation will segfault.
CudaConst alpha = CudaOne(d.C.type);
CudaConst beta = CudaZero(d.C.type);
cusparseSpMatDescr_t mat_a = 0;
cusparseDnMatDescr_t mat_b = 0;
cusparseDnMatDescr_t mat_c = 0;
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
cusparseCreateCsr(&mat_a, d.A.rows, d.A.cols, d.A.nnz, csr_row_offsets,
csr_col_ind, csr_values, d.A.index_type, d.A.index_type,
CUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
&mat_b, d.B.rows, d.B.cols,
/*ld=*/d.B.cols, Bbuf, d.B.type, CUSPARSE_ORDER_ROW)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
&mat_c, d.C.rows, d.C.cols,
/*ld=*/d.C.cols, Cbuf, d.C.type, CUSPARSE_ORDER_ROW)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseSpMM(
handle.get(), d.op_A, /*opB=*/CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha,
mat_a, mat_b, &beta, mat_c, d.C.type, CUSPARSE_SPMM_ALG_DEFAULT, buf)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_b)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_c)));
return absl::OkStatus();
}
void CsrMatmat(cudaStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = CsrMatmat_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// CooToDense: Convert COO matrix to dense matrix
static absl::Status CooToDense_(cudaStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const SparseMatDescriptor& d = **s;
auto h = SparseHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
cusparseSpMatDescr_t mat_a = 0;
cusparseDnMatDescr_t mat_b = 0;
JAX_RETURN_IF_ERROR(
JAX_AS_STATUS(cusparseCreateCoo(&mat_a, d.rows, d.cols, d.nnz,
/*cooRowInd=*/buffers[1],
/*cooColInd=*/buffers[2],
/*cooValues=*/buffers[0], d.index_type,
CUSPARSE_INDEX_BASE_ZERO, d.value_type)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
&mat_b, d.rows, d.cols,
/*ld=*/d.cols, buffers[3], d.value_type, CUSPARSE_ORDER_ROW)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
cusparseSparseToDense(handle.get(), mat_a, mat_b,
CUSPARSE_SPARSETODENSE_ALG_DEFAULT, buffers[4])));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_b)));
return absl::OkStatus();
}
void CooToDense(cudaStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = CooToDense_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// CooFromDense: Convert dense matrix to COO matrix
static absl::Status CooFromDense_(cudaStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const SparseMatDescriptor& d = **s;
auto h = SparseHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
cusparseDnMatDescr_t mat_a = 0;
cusparseSpMatDescr_t mat_b = 0;
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
&mat_a, d.rows, d.cols,
/*ld=*/d.cols, buffers[0], d.value_type, CUSPARSE_ORDER_ROW)));
JAX_RETURN_IF_ERROR(
JAX_AS_STATUS(cusparseCreateCoo(&mat_b, d.rows, d.cols, d.nnz,
/*cooRowInd=*/buffers[2],
/*cooColInd=*/buffers[3],
/*cooValues=*/buffers[1], d.index_type,
CUSPARSE_INDEX_BASE_ZERO, d.value_type)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDenseToSparse_analysis(
handle.get(), mat_a, mat_b, CUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
buffers[4])));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDenseToSparse_convert(
handle.get(), mat_a, mat_b, CUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
buffers[4])));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_a)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_b)));
return absl::OkStatus();
}
void CooFromDense(cudaStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = CooFromDense_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// CooMatvec: Product of COO matrix and dense vector.
static absl::Status CooMatvec_(cudaStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<CooMatvecDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const CooMatvecDescriptor& d = **s;
auto h = SparseHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
void* coo_values = buffers[0];
void* coo_row_ind = buffers[1];
void* coo_col_ind = buffers[2];
void* xbuf = buffers[3];
void* ybuf = buffers[4];
void* buf = buffers[5];
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
// are sufficient for basic matvec operations.
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
// or else the operation will segfault.
CudaConst alpha = CudaOne(d.y.type);
CudaConst beta = CudaZero(d.y.type);
cusparseSpMatDescr_t mat_a = 0;
cusparseDnVecDescr_t vec_x = 0;
cusparseDnVecDescr_t vec_y = 0;
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateCoo(
&mat_a, d.A.rows, d.A.cols, d.A.nnz, coo_row_ind, coo_col_ind, coo_values,
d.A.index_type, CUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
JAX_RETURN_IF_ERROR(
JAX_AS_STATUS(cusparseCreateDnVec(&vec_x, d.x.size, xbuf, d.x.type)));
JAX_RETURN_IF_ERROR(
JAX_AS_STATUS(cusparseCreateDnVec(&vec_y, d.y.size, ybuf, d.y.type)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
cusparseSpMV(handle.get(), d.op, &alpha, mat_a, vec_x, &beta, vec_y,
d.y.type, CUSPARSE_MV_ALG_DEFAULT, buf)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnVec(vec_x)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnVec(vec_y)));
return absl::OkStatus();
}
void CooMatvec(cudaStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = CooMatvec_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// CooMatmat: Product of COO matrix and dense matrix.
static absl::Status CooMatmat_(cudaStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<CooMatmatDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const CooMatmatDescriptor& d = **s;
auto h = SparseHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
void* coo_values = buffers[0];
void* coo_row_ind = buffers[1];
void* coo_col_ind = buffers[2];
void* Bbuf = buffers[3];
void* Cbuf = buffers[4];
void* buf = buffers[5];
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
// are sufficient for basic matvec operations.
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
// or else the operation will segfault.
CudaConst alpha = CudaOne(d.C.type);
CudaConst beta = CudaZero(d.C.type);
cusparseSpMatDescr_t mat_a = 0;
cusparseDnMatDescr_t mat_b = 0;
cusparseDnMatDescr_t mat_c = 0;
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateCoo(
&mat_a, d.A.rows, d.A.cols, d.A.nnz, coo_row_ind, coo_col_ind, coo_values,
d.A.index_type, CUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
&mat_b, d.B.rows, d.B.cols,
/*ld=*/d.B.cols, Bbuf, d.B.type, CUSPARSE_ORDER_ROW)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
&mat_c, d.C.rows, d.C.cols,
/*ld=*/d.C.cols, Cbuf, d.C.type, CUSPARSE_ORDER_ROW)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseSpMM(
handle.get(), d.op_A, /*opB=*/CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha,
mat_a, mat_b, &beta, mat_c, d.C.type, CUSPARSE_SPMM_ALG_DEFAULT, buf)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_b)));
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_c)));
return absl::OkStatus();
}
void CooMatmat(cudaStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = CooMatmat_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
#endif // if JAX_CUSPARSE_11300
template <typename T, typename F>
static absl::Status gtsv2(F computeGtsv2, cudaStream_t stream, void** buffers,
const char* opaque, std::size_t opaque_len) {
auto h = SparseHandlePool::Borrow();
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
auto s = UnpackDescriptor<Gtsv2Descriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const Gtsv2Descriptor& descriptor = **s;
int m = descriptor.m;
int n = descriptor.n;
int ldb = descriptor.ldb;
const T* dl = (const T*)(buffers[0]);
const T* d = (const T*)(buffers[1]);
const T* du = (const T*)(buffers[2]);
const T* B = (T*)(buffers[3]);
T* X = (T*)(buffers[4]);
void* buffer = buffers[5];
// The solution X is written in place to B. We need to therefore copy the
// contents of B into the output buffer X and pass that into the kernel as B.
// Once copy insertion is supported for custom call aliasing, we could alias B
// with X and avoid the copy, the code below is written defensively assuming B
// and X might alias, but today we know they will not.
// TODO(b/182906199): Update the comment here once copy insertion is WAI.
if (X != B) {
size_t B_bytes = ldb * n * sizeof(T);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
cudaMemcpyAsync(X, B, B_bytes, cudaMemcpyDeviceToDevice, stream)));
}
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
computeGtsv2(handle.get(), m, n, dl, d, du, /*B=*/X, ldb, buffer)));
return absl::OkStatus();
}
void gtsv2_f32(cudaStream_t stream, void** buffers, const char* opaque,
std::size_t opaque_len, XlaCustomCallStatus* status) {
auto s = gtsv2<float>(cusparseSgtsv2, stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
void gtsv2_f64(cudaStream_t stream, void** buffers, const char* opaque,
std::size_t opaque_len, XlaCustomCallStatus* status) {
auto s = gtsv2<double>(cusparseDgtsv2, stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
} // namespace jax