Skip to content

Latest commit

 

History

History

benchmark

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Benchmark

Machine:

  • CPU: 12-core Intel(R) Xeon(R) CPU E5-2620 v2 @2.10GHz
  • GPU: Tesla K40m
  • cuDNN: v5.1
  • system: Docker 1.12.1, all platforms are tested in docker environment.

Platforms:

  • PaddlePaddle: paddledev/paddle:gpu-devel-v0.9.0a0
  • Tensorflow: gcr.io/tensorflow/tensorflow:0.11.0rc0-gpu
  • Caffe: kaixhin/cuda-caffe

Several convolutional neural networks and recurrent neural networks are used to test.

Image

Benchmark Model

AlexNet, GoogleNet and a small network used in Caffe.

Single-GPU

  • AlexNet: input - 3 * 227 * 227, Time: ms/batch
BatchSize 64 128 256 512
PaddlePaddle 195 334 602 1629
TensorFlow 223 364 645 1235
Caffe 324 627 1232 2513

Notation

All platforms use cuDNN-v5.1. We see that caffe is slower in this experiment, because its workspace limit size of cuDNN-conv interface is 8 * 1024 * 1024, which is smaller in PaddlePaddle and TensorFlow. Note that Caffe will be faster if increasing the workspace limit size.

  • GoogletNet: input - 3 * 224 * 224, Time: ms/batch
BatchSize 64 128 256
PaddlePaddle 613 1149 2348
TensorFlow 644 1176 2219
Caffe 694 1364 out of memory
  • SmallNet: input - 3 * 32 * 32, Time ms/batch
BatchSize 64 128 256 512
PaddlePaddle 10.463 18.184 33.113 63.039
TensorFlow 9 15 28 59
Caffe 9.373 16.6606 31.4797 59.719

Notation

All the single-GPU experiments in caffe use caffe time to calculate elapsed time, which does not include parameter updating time. However, both PaddlePaddle and TensorFlow experiments contain the parameter updating time. As compared with the total time, this part is relatively little on single machine, we can ignore it.

In Tensorflow, they implement algorithm searching method instead of using the algorithm searching interface in cuDNN.

Multi-GPU: 4 GPUs

  • AlexNet, ms / batch
total-BatchSize 128 * 4 256 * 4
PaddlePaddle 347 622
TensorFlow 377 675
Caffe 1229 2435

For example, if total-BatchSize = 128 * 4, the speedup ratio is calculated by

  time_at_1gpu_batch_128 * 4 / time_at_4gpu_total_batch_512 
= (334 * 4)/347 
= 3.85

  • GoogleNet, ms / batch
total-BatchSize 128 * 4 256 * 4
PaddlePaddle 1178 2367
TensorFlow 1210 2292
Caffe 2007 out of memory

RNN

We use lstm network for text classfication to test benchmark.

Dataset

  • IMDB
  • Sequence length is 100. In fact, PaddlePaddle supports training with variable-length sequence, but TensorFlow needs to pad. Thus, we also pad sequence length to 100 in PaddlePaddle in order to compare.
  • Dictionary size=30000
  • Peephole connection is used in lstmemory by default in PaddlePaddle. It is also configured in TensorFlow.

Single-GPU

LSTM in Text Classification

Testing 2 lstm layer + fc network with different hidden size and batch size.

  • Batch size = 64, ms / batch
hidden_size 256 512 1280
PaddlePaddle 83 184 641
TensorFlow 175 280 818
  • Batch size = 128, ms / batch
hidden_size 256 512 1280
PaddlePaddle 110 261 1007
TensorFlow 181 361 1237
  • Batch size = 256, ms / batch
hidden_size 256 512 1280
PaddlePaddle 170 414 1655
TensorFlow 238 536 1905

Seq2Seq

The benchmark of sequence-to-sequence network will be added later.

Multi GPU: 4 GPUs

LSTM in Text Classification

  • hidden_size = 256, ms / batch
batch_size 256 512
PaddlePaddle 90 118
TensorFlow 226 118
  • hidden_size = 512, ms / batch
batch_size 256 512
PaddlePaddle 189 268
TensorFlow 297 383

Seq2Seq

The benchmark of sequence-to-sequence network will be added later.