forked from flintlib/flint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbit_unpack.c
232 lines (188 loc) · 6.99 KB
/
bit_unpack.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
Copyright (C) 2007 David Howden
Copyright (C) 2010 William Hart
This file is part of FLINT.
FLINT is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <https://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <gmp.h>
#include "flint.h"
#include "nmod_vec.h"
#include "nmod_poly.h"
#include "fmpz.h"
/* Assumes len > 0, bits > 0. */
void
_nmod_poly_bit_unpack(mp_ptr res, slong len, mp_srcptr mpn, flint_bitcnt_t bits,
nmod_t mod)
{
slong i;
ulong current_bit = 0, current_limb = 0;
mp_limb_t temp_lower, temp_upper, temp_upper2;
if (bits < FLINT_BITS)
{
ulong boundary_limit_bit = FLINT_BITS - bits;
mp_limb_t mask = (WORD(1) << bits) - WORD(1);
for (i = 0; i < len; i++)
{
if (current_bit > boundary_limit_bit)
{
temp_lower = mpn[current_limb++] >> current_bit;
temp_upper = mpn[current_limb] << (FLINT_BITS - current_bit);
temp_upper |= temp_lower;
temp_upper &= mask;
NMOD_RED(res[i], temp_upper, mod);
current_bit += bits - FLINT_BITS;
}
else
{
/* the coeff will fit in the current limb */
temp_upper = (mpn[current_limb] >> current_bit) & mask;
NMOD_RED(res[i], temp_upper, mod);
current_bit += bits;
if (current_bit == FLINT_BITS)
{
current_bit = 0;
current_limb++;
}
}
}
}
else if (bits == FLINT_BITS)
{
for (i = 0; i < len; i++)
NMOD_RED(res[i], mpn[i], mod);
}
else if (bits == 2 * FLINT_BITS)
{
for (i = 0; i < len; i++)
{
NMOD2_RED2(res[i], mpn[current_limb + 1], mpn[current_limb], mod);
current_limb += 2;
}
}
else if (bits < 2 * FLINT_BITS) /* FLINT_BITS < bits < 2*FLINT_BITS */
{
ulong double_boundary_limit_bit = 2 * FLINT_BITS - bits;
mp_limb_t mask = (WORD(1) << (bits - FLINT_BITS)) - WORD(1);
for (i = 0; i < len; i++)
{
if (current_bit == 0)
{
temp_lower = mpn[current_limb++];
temp_upper = mpn[current_limb] & mask;
NMOD2_RED2(res[i], temp_upper, temp_lower, mod);
current_bit = bits - FLINT_BITS;
}
else if (current_bit > double_boundary_limit_bit)
{
/* the coeff will be across two limb boundaries */
temp_lower = mpn[current_limb++] >> current_bit;
temp_lower |=
(mpn[current_limb] << (FLINT_BITS - current_bit));
temp_upper = mpn[current_limb++] >> current_bit;
temp_upper |=
(mpn[current_limb] << (FLINT_BITS - current_bit));
temp_upper &= mask;
NMOD2_RED2(res[i], temp_upper, temp_lower, mod);
current_bit += bits - 2 * FLINT_BITS;
}
else
{
/* the coeff will be across one limb boundary */
temp_lower =
(mpn[current_limb] >> current_bit) | (mpn[current_limb + 1]
<< (FLINT_BITS -
current_bit));
current_limb++;
temp_upper = mpn[current_limb] >> current_bit;
temp_upper &= mask;
NMOD2_RED2(res[i], temp_upper, temp_lower, mod);
current_bit += bits - FLINT_BITS;
if (current_bit == FLINT_BITS)
{
current_bit = 0;
current_limb++;
}
}
}
}
else /* 2*FLINT_BITS < bits < 3*FLINT_BITS */
{
ulong double_boundary_limit_bit = 3 * FLINT_BITS - bits;
mp_limb_t mask = (WORD(1) << (bits - 2 * FLINT_BITS)) - WORD(1);
for (i = 0; i < len; i++)
{
if (current_bit == 0)
{
temp_lower = mpn[current_limb++];
temp_upper = mpn[current_limb++];
temp_upper2 = mpn[current_limb] & mask;
NMOD_RED3(res[i], temp_upper2, temp_upper, temp_lower, mod);
current_bit = bits - 2 * FLINT_BITS;
}
else if (current_bit <= double_boundary_limit_bit)
{
/* the coeff will be across two limb boundaries */
temp_lower = mpn[current_limb++] >> current_bit;
temp_lower |=
(mpn[current_limb] << (FLINT_BITS - current_bit));
temp_upper = mpn[current_limb++] >> current_bit;
temp_upper |=
(mpn[current_limb] << (FLINT_BITS - current_bit));
temp_upper2 = mpn[current_limb] >> current_bit;
temp_upper2 &= mask;
NMOD_RED3(res[i], temp_upper2, temp_upper, temp_lower, mod);
current_bit += bits - 2 * FLINT_BITS;
if (current_bit == FLINT_BITS)
{
current_bit = 0;
current_limb++;
}
}
else
{
/* the coeff will be across three limb boundaries */
temp_lower = mpn[current_limb++] >> current_bit;
temp_lower |=
(mpn[current_limb] << (FLINT_BITS - current_bit));
temp_upper = mpn[current_limb++] >> current_bit;
temp_upper |=
(mpn[current_limb] << (FLINT_BITS - current_bit));
temp_upper2 = mpn[current_limb++] >> current_bit;
temp_upper2 |=
(mpn[current_limb] << (FLINT_BITS - current_bit));
temp_upper2 &= mask;
NMOD_RED3(res[i], temp_upper2, temp_upper, temp_lower, mod);
current_bit += bits - 3 * FLINT_BITS;
}
}
}
}
void
nmod_poly_bit_unpack(nmod_poly_t poly, const fmpz_t f, flint_bitcnt_t bit_size)
{
slong len;
mpz_t tmp;
if (fmpz_sgn(f) < 0)
{
flint_printf("Exception (nmod_poly_bit_unpack). f < 0.\n");
flint_abort();
}
if (bit_size == 0 || fmpz_is_zero(f))
{
nmod_poly_zero(poly);
return;
}
len = (fmpz_bits(f) + bit_size - 1) / bit_size;
mpz_init2(tmp, bit_size*len);
flint_mpn_zero(tmp->_mp_d, tmp->_mp_alloc);
fmpz_get_mpz(tmp, f);
nmod_poly_fit_length(poly, len);
_nmod_poly_bit_unpack(poly->coeffs, len, tmp->_mp_d, bit_size, poly->mod);
poly->length = len;
_nmod_poly_normalise(poly);
mpz_clear(tmp);
}