-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscf.cpp
213 lines (205 loc) · 6.97 KB
/
scf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include <stdio.h>
#include <stdlib.h>
#include <lapacke.h>
#include <cblas.h>
#include "common.h"
void Mix(){
/****************************************************
Mix the density matrix with the previous one
****************************************************/
double P1,P2;
double E_xc0,E_xc1,E_ee;
// form new density matrix
for(int mu=0; mu<Aorbnum;mu++){
for(int nu=0; nu<Aorbnum;nu++){
P1 = P2 = 0.0;
for(int i=0; i<N_up;i++){
P1 += C[0][mu][i]*C[0][nu][i];
}
for(int i=0; i<N_down;i++){
P2 += C[1][mu][i]*C[1][nu][i];
}
P[0][mu][nu] = Mixing*P1 + (1.0-Mixing)*P[0][mu][nu];
P[1][mu][nu] = Mixing*P2 + (1.0-Mixing)*P[1][mu][nu];
P_tot[mu][nu] = P[0][mu][nu] + P[1][mu][nu];
}
}
// form new eletron electron matrix
for(int mu=0; mu<Aorbnum;mu++){
for(int nu=0; nu<Aorbnum;nu++){
E_ee = 0.0;
for(int lambda=0; lambda<Aorbnum;lambda++){
for(int sigma=0; sigma<Aorbnum;sigma++){
E_ee += P_tot[lambda][sigma]*Int_two[mu][nu][lambda][sigma];
}
}
H_ee[mu][nu] = E_ee;
}
}
// form new xc interaction matrix
if(Xc_flag == 0){
for(int mu=0; mu<Aorbnum;mu++){
for(int nu=0; nu<Aorbnum;nu++){
E_xc0 = E_xc1 = 0.0;
for(int lambda=0; lambda<Aorbnum;lambda++){
for(int sigma=0; sigma<Aorbnum;sigma++){
E_xc0 += -1.*P[0][lambda][sigma]*Int_two[mu][lambda][sigma][nu];
E_xc1 += -1.*P[1][lambda][sigma]*Int_two[mu][lambda][sigma][nu];
}
}
H_xc[0][mu][nu] = E_xc0;
H_xc[1][mu][nu] = E_xc1;
}
}
}
else if(Xc_flag == 1 && SCF_Step>0){
Cal_rho();
printf("Total charge: %f\n",Quadrature(rho[0])+Quadrature(rho[1]));
double *result;
result = (double *)malloc(sizeof(double)*2);
for(int mu=0; mu<Aorbnum;mu++){
for(int nu=0; nu<Aorbnum;nu++){
Cal_xc_matrix(result,mu,nu);
H_xc[0][mu][nu] = result[0];
H_xc[1][mu][nu] = result[1];
}
}
free(result);
}
// form new Hamiltonian matrix
Set_Zero(Aorbnum,H[0]);
Set_Zero(Aorbnum,H[1]);
Addition(Aorbnum,H[0],H_core);Addition(Aorbnum,H[0],H_ee);Addition(Aorbnum,H[0],H_xc[0]);
Addition(Aorbnum,H[1],H_core);Addition(Aorbnum,H[1],H_ee);Addition(Aorbnum,H[1],H_xc[1]);
}
void Total_Energy(){
double Energy = 0.0;
if(Xc_flag == 0){
for(int mu = 0; mu < Aorbnum; mu++){
for(int nu = 0; nu < Aorbnum; nu++){
Energy+=0.5*(P_tot[mu][nu]*H_core[mu][nu]+H[0][mu][nu]*P[0][mu][nu]+H[1][mu][nu]*P[1][mu][nu]);
}
}
Etot[SCF_Step] = Energy;
}
else if(Xc_flag == 1){
double Energy_one = 0.0;
// one body energy
for(int mu = 0; mu < Aorbnum; mu++){
for(int nu = 0; nu < Aorbnum; nu++){
Energy_one = 0.0;
for(int lambda = 0; lambda< Aorbnum;lambda++){
for(int sigma = 0; sigma< Aorbnum; sigma++){
Energy_one+=P_tot[lambda][sigma]*Int_two[mu][nu][lambda][sigma];
}
}
Energy+=P_tot[mu][nu]*H_core[mu][nu]+0.5*Energy_one*P_tot[mu][nu];
}
}
// xc energy
if(SCF_Step>0){
Cal_rho();
Energy += Cal_xc_energy();
Etot[SCF_Step] = Energy;
}
else{
Etot[SCF_Step] = Energy;
}
}
}
void SCF(){
int info_0,info_1;
double D_Etot;
// SCF 0
Mix();
for(int mu = 0; mu < Aorbnum; mu++){
for(int nu = 0; nu < Aorbnum; nu++){
C[0][mu][nu] = H[0][mu][nu];
C[1][mu][nu] = H[1][mu][nu];
}
}
for(int i=0; i<Aorbnum;i++){
for(int j=0; j<Aorbnum; j++){
S_data[i*Aorbnum+j] = S[i][j];
}
}
info_0 = LAPACKE_dsygvd(LAPACK_ROW_MAJOR,1, 'V', 'U', Aorbnum, C_data[0], Aorbnum, S_data,Aorbnum, Eorb[0]);
for(int i=0; i<Aorbnum;i++){
for(int j=0; j<Aorbnum; j++){
S_data[i*Aorbnum+j] = S[i][j];
}
}
info_1 = LAPACKE_dsygvd(LAPACK_ROW_MAJOR,1, 'V', 'U', Aorbnum, C_data[1], Aorbnum, S_data,Aorbnum, Eorb[1]);
// calculate the total energy
SCF_Step = 0;
Total_Energy();
printf("E = %.7f\n",Etot[0]);
for(SCF_Step=1;SCF_Step<=Max_SCF;SCF_Step++){
printf("**********************SCF = %-2d*************************\n",SCF_Step);
Mix();
/*
dsygvd write the eigenvectors over the input matrix A
the Cholesky factorization over B
In order to keep the value of H and S unchanged
I copy H to C and using C as input, and copy S to S_dummy
*/
for(int mu = 0; mu < Aorbnum; mu++){
for(int nu = 0; nu < Aorbnum; nu++){
C_data[0][mu*Aorbnum+nu] = H[0][mu][nu];
C_data[1][mu*Aorbnum+nu] = H[1][mu][nu];
}
}
for(int i=0; i<Aorbnum;i++){
for(int j=0; j<Aorbnum; j++){
S_data[i*Aorbnum+j] = S[i][j];
}
}
// solve the generalized eigenvalue problem
info_0 = LAPACKE_dsygvd(LAPACK_ROW_MAJOR,1, 'V', 'U', Aorbnum, C_data[0], Aorbnum, S_data,Aorbnum, Eorb[0]);
for(int i=0; i<Aorbnum;i++){
for(int j=0; j<Aorbnum; j++){
S_data[i*Aorbnum+j] = S[i][j];
}
}
info_1 = LAPACKE_dsygvd(LAPACK_ROW_MAJOR,1, 'V', 'U', Aorbnum, C_data[1], Aorbnum, S_data,Aorbnum, Eorb[1]);
// find the occupation states
N_up = N_down = 0;
for(int i=0;i<Enum;i++){
if (Eorb[0][N_up]<=Eorb[1][N_down]){
Fermi_Energy = Eorb[0][N_up];
N_up += 1;
}
else{
Fermi_Energy = Eorb[1][N_down];
N_down += 1;
}
}
printf("energy of HOMO: %.8f\n",Fermi_Energy);
printf("up = %-2d, down = %-2d\n",N_up,N_down);
// calculate the total energy
Total_Energy();
if(SCF_Step > 1){
D_Etot = Etot[SCF_Step] - Etot[SCF_Step-1];
// convergence test
if(abs(D_Etot)<=E_Conv){
printf("\nConvergence reached at SCF = %d\n",SCF_Step);
printf("E = %.10f, dE = %.10f\n",Etot[SCF_Step], D_Etot);
printf("orbital energy\n");
Print_Matrix(2,Aorbnum,Eorb);
printf("spin up eigen vector\n");
Print_Matrix(Aorbnum,Aorbnum,C[0]);
printf("spin down eigen vector\n");
Print_Matrix(Aorbnum,Aorbnum,C[1]);
break;
}
else{
printf("E = %.10f, dE = %.10f\n",Etot[SCF_Step], D_Etot);
}
}
else{
D_Etot = 0.0;
printf("E = %.10f, dE = %.10f\n",Etot[SCF_Step], D_Etot);
}
}
}
void Wave_function(){}