forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_caffe_image_db.cc
90 lines (84 loc) · 3.31 KB
/
convert_caffe_image_db.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "caffe2/core/db.h"
#include "caffe2/core/init.h"
#include "caffe2/proto/caffe2.pb.h"
#include "caffe/proto/caffe.pb.h"
#include "caffe2/core/logging.h"
CAFFE2_DEFINE_string(input_db, "", "The input db.");
CAFFE2_DEFINE_string(input_db_type, "", "The input db type.");
CAFFE2_DEFINE_string(output_db, "", "The output db.");
CAFFE2_DEFINE_string(output_db_type, "", "The output db type.");
CAFFE2_DEFINE_int(batch_size, 1000, "The write batch size.");
using caffe2::db::Cursor;
using caffe2::db::DB;
using caffe2::db::Transaction;
using caffe2::TensorProto;
using caffe2::TensorProtos;
int main(int argc, char** argv) {
caffe2::GlobalInit(&argc, &argv);
std::unique_ptr<DB> in_db(caffe2::db::CreateDB(
caffe2::FLAGS_input_db_type, caffe2::FLAGS_input_db, caffe2::db::READ));
std::unique_ptr<DB> out_db(caffe2::db::CreateDB(
caffe2::FLAGS_output_db_type, caffe2::FLAGS_output_db, caffe2::db::NEW));
std::unique_ptr<Cursor> cursor(in_db->NewCursor());
std::unique_ptr<Transaction> transaction(out_db->NewTransaction());
int count = 0;
for (; cursor->Valid(); cursor->Next()) {
caffe::Datum datum;
CAFFE_ENFORCE(datum.ParseFromString(cursor->value()));
TensorProtos protos;
TensorProto* data = protos.add_protos();
TensorProto* label = protos.add_protos();
label->set_data_type(TensorProto::INT32);
label->add_dims(1);
label->add_int32_data(datum.label());
if (datum.encoded()) {
// This is an encoded image. we will copy over the data directly.
data->set_data_type(TensorProto::STRING);
data->add_dims(1);
data->add_string_data(datum.data());
} else {
// float data not supported right now.
CAFFE_ENFORCE_EQ(datum.float_data_size(), 0);
std::vector<char> buffer_vec(datum.data().size());
char* buffer = buffer_vec.data();
// swap order from CHW to HWC
int channels = datum.channels();
int size = datum.height() * datum.width();
CAFFE_ENFORCE_EQ(datum.data().size(), channels * size);
for (int c = 0; c < channels; ++c) {
char* dst = buffer + c;
const char* src = datum.data().c_str() + c * size;
for (int n = 0; n < size; ++n) {
dst[n*channels] = src[n];
}
}
data->set_data_type(TensorProto::BYTE);
data->add_dims(datum.height());
data->add_dims(datum.width());
data->add_dims(datum.channels());
data->set_byte_data(buffer, datum.data().size());
}
transaction->Put(cursor->key(), protos.SerializeAsString());
if (++count % caffe2::FLAGS_batch_size == 0) {
transaction->Commit();
LOG(INFO) << "Converted " << count << " items so far.";
}
}
LOG(INFO) << "A total of " << count << " items processed.";
return 0;
}