forked from owent/libcopp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_benchmark_std_couroutine_task_create_generator.cpp
154 lines (126 loc) · 4.88 KB
/
sample_benchmark_std_couroutine_task_create_generator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// Copyright 2023 owent
// std coroutine trivial task_future benchmark
#include <libcopp/coroutine/callable_promise.h>
#include <libcopp/coroutine/generator_promise.h>
#include <libcotask/task_promise.h>
#include <inttypes.h>
#include <stdint.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <vector>
#if defined(LIBCOPP_MACRO_ENABLE_STD_COROUTINE) && LIBCOPP_MACRO_ENABLE_STD_COROUTINE
# ifdef LIBCOTASK_MACRO_ENABLED
# if defined(PROJECT_LIBCOPP_SAMPLE_HAS_CHRONO) && PROJECT_LIBCOPP_SAMPLE_HAS_CHRONO
# include <chrono>
# define CALC_CLOCK_T std::chrono::system_clock::time_point
# define CALC_CLOCK_NOW() std::chrono::system_clock::now()
# define CALC_MS_CLOCK(x) static_cast<int>(std::chrono::duration_cast<std::chrono::milliseconds>(x).count())
# define CALC_NS_AVG_CLOCK(x, y) \
static_cast<long long>(std::chrono::duration_cast<std::chrono::nanoseconds>(x).count() / (y ? y : 1))
# else
# define CALC_CLOCK_T clock_t
# define CALC_CLOCK_NOW() clock()
# define CALC_MS_CLOCK(x) static_cast<int>((x) / (CLOCKS_PER_SEC / 1000))
# define CALC_NS_AVG_CLOCK(x, y) (1000000LL * static_cast<long long>((x) / (CLOCKS_PER_SEC / 1000)) / (y ? y : 1))
# endif
using benchmark_task_future_type = cotask::task_future<int64_t, void>;
using benchmark_generator_future_type = copp::generator_future<int64_t>;
std::vector<benchmark_task_future_type> g_benchmark_task_list;
std::vector<benchmark_generator_future_type::context_pointer_type> g_benchmark_generator_list;
int switch_count = 100;
int max_task_number = 100000;
benchmark_task_future_type run_benchmark(size_t idx, int left_switch_count) {
int64_t result = 0;
while (left_switch_count-- >= 0) {
auto gen_res =
co_await benchmark_generator_future_type([idx](benchmark_generator_future_type::context_pointer_type ctx) {
g_benchmark_generator_list[idx] = std::move(ctx);
});
result += gen_res;
}
co_return result;
}
static void benchmark_round(int index) {
g_benchmark_task_list.reserve(static_cast<size_t>(max_task_number));
g_benchmark_generator_list.resize(static_cast<size_t>(max_task_number), nullptr);
printf("### Round: %d ###\n", index);
time_t begin_time = time(nullptr);
CALC_CLOCK_T begin_clock = CALC_CLOCK_NOW();
// create coroutines task
while (g_benchmark_task_list.size() < static_cast<size_t>(max_task_number)) {
g_benchmark_task_list.push_back(run_benchmark(g_benchmark_task_list.size(), switch_count));
}
for (auto& task_inst : g_benchmark_task_list) {
task_inst.start();
}
time_t end_time = time(nullptr);
CALC_CLOCK_T end_clock = CALC_CLOCK_NOW();
printf("create %d task(s) and generator(s), cost time: %d s, clock time: %d ms, avg: %lld ns\n", max_task_number,
static_cast<int>(end_time - begin_time), CALC_MS_CLOCK(end_clock - begin_clock),
CALC_NS_AVG_CLOCK(end_clock - begin_clock, max_task_number));
begin_time = end_time;
begin_clock = end_clock;
// yield & resume from runner
bool continue_flag = true;
long long real_switch_times = static_cast<long long>(0);
int32_t round = 0;
while (continue_flag) {
++round;
continue_flag = false;
for (auto& generator_context : g_benchmark_generator_list) {
benchmark_generator_future_type::context_pointer_type move_context;
move_context.swap(generator_context);
if (move_context) {
move_context->set_value(round);
++real_switch_times;
continue_flag = true;
}
}
}
end_time = time(nullptr);
end_clock = CALC_CLOCK_NOW();
printf("resume %d task(s) and generator(s) for %lld times, cost time: %d s, clock time: %d ms, avg: %lld ns\n",
max_task_number, real_switch_times, static_cast<int>(end_time - begin_time),
CALC_MS_CLOCK(end_clock - begin_clock), CALC_NS_AVG_CLOCK(end_clock - begin_clock, real_switch_times));
begin_time = end_time;
begin_clock = end_clock;
g_benchmark_task_list.clear();
g_benchmark_generator_list.clear();
end_time = time(nullptr);
end_clock = CALC_CLOCK_NOW();
printf("remove %d task(s), cost time: %d s, clock time: %d ms, avg: %lld ns\n", max_task_number,
static_cast<int>(end_time - begin_time), CALC_MS_CLOCK(end_clock - begin_clock),
CALC_NS_AVG_CLOCK(end_clock - begin_clock, max_task_number));
}
int main(int argc, char* argv[]) {
puts("###################### std task - create generator - trivial ###################");
printf("########## Cmd:");
for (int i = 0; i < argc; ++i) {
printf(" %s", argv[i]);
}
puts("");
if (argc > 1) {
max_task_number = atoi(argv[1]);
}
if (argc > 2) {
switch_count = atoi(argv[2]);
}
for (int i = 1; i <= 5; ++i) {
benchmark_round(i);
}
return 0;
}
# else
int main() {
puts("task_future disabled.");
return 0;
}
# endif
#else
int main() {
puts("std coroutine is not supported by current compiler.");
return 0;
}
#endif