forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SILBuilder.cpp
300 lines (255 loc) · 11.5 KB
/
SILBuilder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//===--- SILBuilder.cpp - Class for creating SIL Constructs ----------------==//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILBuilder.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// SILBuilder Implementation
//===----------------------------------------------------------------------===//
SILType SILBuilder::getPartialApplyResultType(SILType origTy, unsigned argCount,
SILModule &M,
ArrayRef<Substitution> subs) {
CanSILFunctionType FTI = origTy.castTo<SILFunctionType>();
if (!subs.empty())
FTI = FTI->substGenericArgs(M, M.getSwiftModule(), subs);
assert(!FTI->isPolymorphic()
&& "must provide substitutions for generic partial_apply");
auto params = FTI->getParameters();
auto newParams = params.slice(0, params.size() - argCount);
auto extInfo = SILFunctionType::ExtInfo(
SILFunctionType::Representation::Thick,
/*noreturn*/ FTI->isNoReturn());
auto appliedFnType = SILFunctionType::get(nullptr, extInfo,
ParameterConvention::Direct_Owned,
newParams,
FTI->getResult(),
FTI->getOptionalErrorResult(),
M.getASTContext());
return SILType::getPrimitiveObjectType(appliedFnType);
}
// If legal, create an unchecked_ref_cast from the given operand and result
// type, otherwise return null.
SILInstruction *SILBuilder::tryCreateUncheckedRefCast(SILLocation Loc,
SILValue Op,
SILType ResultTy) {
auto &M = F.getModule();
if (!SILType::canRefCast(Op.getType(), ResultTy, M))
return nullptr;
return insert(
new (M) UncheckedRefCastInst(createSILDebugLocation(Loc), Op, ResultTy));
}
// Create the appropriate cast instruction based on result type.
SILInstruction *SILBuilder::createUncheckedBitCast(SILLocation Loc,
SILValue Op,
SILType Ty) {
auto &M = F.getModule();
if (Ty.isTrivial(M))
return insert(new (M) UncheckedTrivialBitCastInst(
createSILDebugLocation(Loc), Op, Ty));
if (auto refCast = tryCreateUncheckedRefCast(Loc, Op, Ty))
return refCast;
// The destination type is nontrivial, and may be smaller than the source
// type, so RC identity cannot be assumed.
return insert(
new (M) UncheckedBitwiseCastInst(createSILDebugLocation(Loc), Op, Ty));
}
BranchInst *SILBuilder::createBranch(SILLocation Loc,
SILBasicBlock *TargetBlock,
OperandValueArrayRef Args) {
SmallVector<SILValue, 6> ArgsCopy;
ArgsCopy.reserve(Args.size());
for (auto I = Args.begin(), E = Args.end(); I != E; ++I)
ArgsCopy.push_back(*I);
return createBranch(Loc, TargetBlock, ArgsCopy);
}
/// \brief Branch to the given block if there's an active insertion point,
/// then move the insertion point to the end of that block.
void SILBuilder::emitBlock(SILBasicBlock *BB, SILLocation BranchLoc) {
if (!hasValidInsertionPoint()) {
return emitBlock(BB);
}
// Fall though from the currently active block into the given block.
assert(BB->bbarg_empty() && "cannot fall through to bb with args");
// This is a fall through into BB, emit the fall through branch.
createBranch(BranchLoc, BB);
// Start inserting into that block.
setInsertionPoint(BB);
}
/// splitBlockForFallthrough - Prepare for the insertion of a terminator. If
/// the builder's insertion point is at the end of the current block (as when
/// SILGen is creating the initial code for a function), just create and
/// return a new basic block that will be later used for the continue point.
///
/// If the insertion point is valid (i.e., pointing to an existing
/// instruction) then split the block at that instruction and return the
/// continuation block.
SILBasicBlock *SILBuilder::splitBlockForFallthrough() {
// If we are concatenating, just create and return a new block.
if (insertingAtEndOfBlock()) {
return new (F.getModule()) SILBasicBlock(&F, BB);
}
// Otherwise we need to split the current block at the insertion point.
auto *NewBB = BB->splitBasicBlock(InsertPt);
InsertPt = BB->end();
return NewBB;
}
PointerUnion<CopyAddrInst *, DestroyAddrInst *>
SILBuilder::emitDestroyAddr(SILLocation Loc, SILValue Operand) {
// Check to see if the instruction immediately before the insertion point is a
// copy_addr from the specified operand. If so, we can fold this into the
// copy_addr as a take.
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto CA = dyn_cast<CopyAddrInst>(Inst)) {
if (CA->getSrc() == Operand && !CA->isTakeOfSrc()) {
CA->setIsTakeOfSrc(IsTake);
return CA;
}
}
// destroy_addrs commonly exist in a block of dealloc_stack's, which don't
// affect take-ability.
if (isa<DeallocStackInst>(Inst))
continue;
// This code doesn't try to prove tricky validity constraints about whether
// it is safe to push the destroy_addr past interesting instructions.
if (Inst->mayHaveSideEffects())
break;
}
// If we didn't find a copy_addr to fold this into, emit the destroy_addr.
return createDestroyAddr(Loc, Operand);
}
static bool couldReduceStrongRefcount(SILInstruction *Inst) {
// Simple memory accesses cannot reduce refcounts.
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst) ||
isa<RetainValueInst>(Inst) || isa<UnownedRetainInst>(Inst) ||
isa<UnownedReleaseInst>(Inst) || isa<StrongRetainUnownedInst>(Inst) ||
isa<StoreWeakInst>(Inst) || isa<StrongRetainInst>(Inst) ||
isa<AllocStackInst>(Inst) || isa<DeallocStackInst>(Inst))
return false;
// Assign and copyaddr of trivial types cannot drop refcounts, and 'inits'
// never can either. Nontrivial ones can though, because the overwritten
// value drops a retain. We would have to do more alias analysis to be able
// to safely ignore one of those.
if (auto AI = dyn_cast<AssignInst>(Inst)) {
auto StoredType = AI->getOperand(0).getType();
if (StoredType.isTrivial(Inst->getModule()) ||
StoredType.is<ReferenceStorageType>())
return false;
}
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
// Initializations can only increase refcounts.
if (CAI->isInitializationOfDest())
return false;
SILType StoredType = CAI->getOperand(0).getType().getObjectType();
if (StoredType.isTrivial(Inst->getModule()) ||
StoredType.is<ReferenceStorageType>())
return false;
}
// This code doesn't try to prove tricky validity constraints about whether
// it is safe to push the release past interesting instructions.
return Inst->mayHaveSideEffects();
}
/// Perform a strong_release instruction at the current location, attempting
/// to fold it locally into nearby retain instructions or emitting an explicit
/// strong release if necessary. If this inserts a new instruction, it
/// returns it, otherwise it returns null.
PointerUnion<StrongRetainInst *, StrongReleaseInst *>
SILBuilder::emitStrongRelease(SILLocation Loc, SILValue Operand) {
// Release on a functionref is a noop.
if (isa<FunctionRefInst>(Operand)) {
return static_cast<StrongReleaseInst *>(nullptr);
}
// Check to see if the instruction immediately before the insertion point is a
// strong_retain of the specified operand. If so, we can zap the pair.
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto *SRA = dyn_cast<StrongRetainInst>(Inst)) {
if (SRA->getOperand() == Operand)
return SRA;
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce strong refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, emit the release.
return createStrongRelease(Loc, Operand);
}
/// Emit a release_value instruction at the current location, attempting to
/// fold it locally into another nearby retain_value instruction. This
/// returns the new instruction if it inserts one, otherwise it returns null.
PointerUnion<RetainValueInst *, ReleaseValueInst *>
SILBuilder::emitReleaseValue(SILLocation Loc, SILValue Operand) {
// Check to see if the instruction immediately before the insertion point is a
// retain_value of the specified operand. If so, we can zap the pair.
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto *SRA = dyn_cast<RetainValueInst>(Inst)) {
if (SRA->getOperand() == Operand)
return SRA;
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, emit the release.
return createReleaseValue(Loc, Operand);
}
SILValue SILBuilder::emitThickToObjCMetatype(SILLocation Loc, SILValue Op,
SILType Ty) {
// If the operand is an otherwise-unused 'metatype' instruction in the
// same basic block, zap it and create a 'metatype' instruction that
// directly produces an Objective-C metatype.
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
if (metatypeInst->use_empty() &&
metatypeInst->getParent() == getInsertionBB()) {
auto origLoc = metatypeInst->getLoc();
metatypeInst->removeFromParent();
return createMetatype(origLoc, Ty);
}
}
// Just create the thick_to_objc_metatype instruction.
return createThickToObjCMetatype(Loc, Op, Ty);
}
SILValue SILBuilder::emitObjCToThickMetatype(SILLocation Loc, SILValue Op,
SILType Ty) {
// If the operand is an otherwise-unused 'metatype' instruction in the
// same basic block, zap it and create a 'metatype' instruction that
// directly produces a thick metatype.
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
if (metatypeInst->use_empty() &&
metatypeInst->getParent() == getInsertionBB()) {
auto origLoc = metatypeInst->getLoc();
metatypeInst->removeFromParent();
return createMetatype(origLoc, Ty);
}
}
// Just create the objc_to_thick_metatype instruction.
return createObjCToThickMetatype(Loc, Op, Ty);
}
SILDebugLocation *
SILBuilder::getOrCreateDebugLocation(SILLocation Loc, const SILDebugScope *DS) {
// Check whether the location already exists.
assert(DS && "empty debug scope");
SILDebugLocation TmpLoc(Loc, DS);
auto *&L = DebugLocs[SILDebugLocationID(TmpLoc)];
if (L)
return L;
// It's new, allocate it on our own allocator and insert it into the set.
L = new (F.getModule()) SILDebugLocation(Loc, DS);
return L;
}