forked from NVIDIA/apex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
175 lines (145 loc) · 5.45 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import re
import os
import shutil
import inspect
import distutils
import distutils.spawn
from distutils.command.clean import clean
from setuptools import setup, Extension, find_packages
from setuptools.command.install import install
import subprocess
import ctypes.util
import torch
#Takes a path to walk
#A function to decide if to keep
#collection if we want a list of all occurances
def find(path, regex_func, collect=False):
collection = [] if collect else None
for root, dirs, files in os.walk(path):
for file in files:
if regex_func(file):
if collect:
collection.append(os.path.join(root, file))
else:
return os.path.join(root, file)
return list(set(collection))
def findcuda():
CUDA_HOME = os.getenv('CUDA_HOME', '/usr/local/cuda')
if not os.path.exists(CUDA_HOME):
# We use nvcc path on Linux and cudart path on macOS
osname = platform.system()
if osname == 'Linux':
cuda_path = find_nvcc()
else:
cudart_path = ctypes.util.find_library('cudart')
if cudart_path is not None:
cuda_path = os.path.dirname(cudart_path)
else:
cuda_path = None
if cuda_path is not None:
CUDA_HOME = os.path.dirname(cuda_path)
else:
CUDA_HOME = None
WITH_CUDA = CUDA_HOME is not None
return CUDA_HOME
#Get some important paths
curdir = os.path.dirname(os.path.abspath(inspect.stack()[0][1]))
buildir = curdir+os.sep+"build"
if not os.path.exists(buildir):
os.makedirs(buildir)
torch_dir = os.path.split(torch.__file__)[0] + os.sep + "lib"
cuda_files = find(curdir, lambda file: file.endswith(".cu"), True)
cuda_headers = find(curdir, lambda file: file.endswith(".cuh"), True)
headers = find(curdir, lambda file: file.endswith(".h"), True)
libaten = find(torch_dir, re.compile("libaten", re.IGNORECASE).search, False)
aten_h = find(torch_dir, re.compile("aten.h", re.IGNORECASE).search, False)
include_dirs = [os.path.dirname(os.path.dirname(aten_h))]
library_dirs = []
for file in cuda_headers+headers:
dir = os.path.dirname(file)
if dir not in include_dirs:
include_dirs.append(dir)
assert libaten, "Could not find PyTorch's libATen."
assert aten_h, "Could not find PyTorch's ATen header."
library_dirs.append(os.path.dirname(libaten))
#create some places to collect important things
object_files = []
extra_link_args=[]
main_libraries = []
main_libraries += ['cudart', 'cuda', 'ATen']
extra_compile_args = ["--std=c++11",]
#findcuda returns root dir of CUDA
#include cuda/include and cuda/lib64 for python module build.
CUDA_HOME=findcuda()
library_dirs.append(os.path.join(CUDA_HOME, "lib64"))
include_dirs.append(os.path.join(CUDA_HOME, 'include'))
class RMBuild(clean):
def run(self):
#BE VERY CAUTIOUS WHEN USING RMTREE!!!
#These are some carefully written/crafted directories
if os.path.exists(buildir):
shutil.rmtree(buildir)
distdir = curdir+os.sep+"dist"
if os.path.exists(distdir):
shutil.rmtree(distdir)
eggdir = curdir+os.sep+"apex.egg-info"
if os.path.exists(eggdir):
shutil.rmtree(eggdir)
clean.run(self)
def CompileCudaFiles():
print()
print("Compiling cuda modules with nvcc:")
#Need arches to compile for. Compiles for 70 which requires CUDA9
nvcc_cmd = ['nvcc',
'-Xcompiler',
'-fPIC',
'-gencode', 'arch=compute_52,code=sm_52',
'-gencode', 'arch=compute_60,code=sm_60',
'-gencode', 'arch=compute_61,code=sm_61',
'-gencode', 'arch=compute_70,code=sm_70',
'-gencode', 'arch=compute_70,code=compute_70',
'--std=c++11',
'-O3',
]
for dir in include_dirs:
nvcc_cmd.append("-I"+dir)
for file in cuda_files:
object_name = os.path.basename(
os.path.splitext(file)[0]+".o"
)
object_file = os.path.join(buildir, object_name)
object_files.append(object_file)
file_opts = ['-c', file, '-o', object_file]
print(' '.join(nvcc_cmd+file_opts))
subprocess.check_call(nvcc_cmd+file_opts)
for object_file in object_files:
extra_link_args.append(object_file)
print()
print("Arguments used to build CUDA extension:")
print("extra_compile_args :", extra_compile_args)
print("include_dirs: ", include_dirs)
print("extra_link_args: ", extra_link_args)
print("library_dirs: ", library_dirs)
print("libraries: ", main_libraries)
print()
CompileCudaFiles()
print("Building CUDA extension.")
cuda_ext = Extension('apex._C',
[os.path.join('csrc', 'Module.cpp')],
extra_compile_args = extra_compile_args,
include_dirs=include_dirs,
extra_link_args=extra_link_args,
library_dirs=library_dirs,
runtime_library_dirs = library_dirs,
libraries=main_libraries
)
print("Building module.")
setup(
name='apex', version='0.1',
cmdclass={
'clean' : RMBuild,
},
ext_modules=[cuda_ext,],
description='PyTorch Extensions written by NVIDIA',
packages=find_packages(exclude=("build", "csrc", "include", "tests")),
)