Skip to content

Evaluating variety of k-Anonymity techniques.

Notifications You must be signed in to change notification settings

sabreys/k-anonymity

Repository files navigation

Differential Privacy using K-Anonymity

To-do list

  • Run 6 methods on 6 datasets
  • Add L-diversity, Classic Mondrian (no hierarchies), Datafly algorithm
  • Make NCP loss a separated module
  • Implement DM, CAVG metrics
  • Implement classification models (basic classifier, clustering)
  • Run experiment on 6 datasets x 6 methods x 2 ML models
  • Finish report
  • (Improvement) T-closeness method, Incognito Algorithm
  • (Optional) Simple Deanonymize Attack

Reports:

Report edit link: report

Executing:

To anonymize dataset, run:

python anonymize.py --method=<model_type> --k=<k-anonymity> --dataset=<dataset_name>
  • model_type: [mondrian | classic_mondrian | mondrian_ldiv | topdown | cluster | datafly]
  • dataset_name: [adult | cahousing | cmc | mgm | informs | italia]

References:

About

Evaluating variety of k-Anonymity techniques.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%