-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrf.py
109 lines (104 loc) · 4.03 KB
/
rf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
from sklearn.ensemble import RandomForestClassifier
with open('fashion-data\\train-label.txt') as f1:
line = f1.readlines()
line = [x.strip('\n') for x in line]
line = np.array(line[:499])
print line.shape
f1.close()
with open('fashion-data\\test-label.txt') as f1:
actual_test_labels = f1.readlines()
actual_test_labels = [x.strip('\n') for x in actual_test_labels]
actual_test_labels = np.array(actual_test_labels)
f1.close()
container = np.load('fashion-data\surf0.npz')
data = [container[key].flatten() for key in container]
a = np.array(data)
container = np.load('fashion-data\surf1.npz')
data = [container[key].flatten() for key in container]
a = np.array(data)
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\surf2.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\hog0.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\hog1.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\hog2.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\lab0.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\lab1.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\lab2.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
# container = np.load('fashion-data\lbp.npz')
# data = [container[key].flatten() for key in container]
# b = np.array(data)
# a = np.concatenate((a, b), axis = 1) #When using only LBP
train_data = np.concatenate((a, b), axis = 1)
print train_data.shape
container = np.load('fashion-data\surf0_test.npz')
data = [container[key].flatten() for key in container]
a = np.array(data)
container = np.load('fashion-data\surf1_test.npz')
data = [container[key].flatten() for key in container]
a = np.array(data)
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\surf2_test.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\hog0_test.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\hog1_test.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\hog2_test.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\lab0_test.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\lab1_test.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
a = np.concatenate((a, b), axis = 1)
container = np.load('fashion-data\lab2_test.npz')
data = [container[key].flatten() for key in container]
b = np.array(data)
# container = np.load('fashion-data\lbp_test.npz')
# data = [container[key].flatten() for key in container]
# b = np.array(data)
# a = np.concatenate((a, b), axis = 1) #When using only LBPs
test_data = np.concatenate((a, b), axis = 1)
print test_data.shape
score = 0
clf = RandomForestClassifier(n_jobs=2)
clf.fit(train_data, line)
print "Done with training the classifier"
result = clf.predict(test_data)
for i in range(len(result)):
score += np.sum(actual_test_labels[i] == result[i])
accuracy = (score * 100)/(len(actual_test_labels))
print accuracy