-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy path09. Longest Increasing Subsequence.cpp
54 lines (44 loc) · 1.26 KB
/
09. Longest Increasing Subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
Longest Increasing Subsequence
==============================
Given an integer array nums, return the length of the longest strictly increasing subsequence.
A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].
Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity?
*/
class Solution
{
public:
int memo[2502][2502];
int lis(vector<int> &A, int ci, int pi)
{
if (ci == A.size())
return 0;
int ans = 0;
if (memo[pi + 1][ci + 1] != -1)
return memo[pi + 1][ci + 1];
if (pi == -1 || A[pi] < A[ci])
{
ans = max(ans, 1 + lis(A, ci + 1, ci));
}
ans = max(ans, lis(A, ci + 1, pi));
return memo[pi + 1][ci + 1] = ans;
}
int lengthOfLIS(vector<int> &A)
{
memset(memo, -1, sizeof memo);
return lis(A, 0, -1);
}
};