forked from meta-llama/llama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example.py
executable file
·74 lines (56 loc) · 2.64 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Tuple
import os
import sys
import torch
import fire
import time
import json
from pathlib import Path
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def load(ckpt_dir: str, tokenizer_path: str, local_rank: int, world_size: int) -> LLaMA:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert (
world_size == len(checkpoints)
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[local_rank]
print("Loading")
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
# model_args: ModelArgs = ModelArgs(max_seq_len=1024, max_batch_size=32, **params)
model_args: ModelArgs = ModelArgs(max_seq_len=1024, max_batch_size=8, **params) # light version
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
# model = Transformer(model_args)
model = Transformer(model_args).cuda().half() # light version
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def main(ckpt_dir: str, tokenizer_path: str, temperature: float = 0.8, top_p: float = 0.95):
local_rank, world_size = setup_model_parallel()
if local_rank > 0:
sys.stdout = open(os.devnull, 'w')
generator = load(ckpt_dir, tokenizer_path, local_rank, world_size)
prompts = ["The capital of Germany is the city of", "Here is my sonnet in the style of Shakespeare about an artificial intelligence:"]
results = generator.generate(prompts, max_gen_len=256, temperature=temperature, top_p=top_p)
for result in results:
print(result)
print("\n==================================\n")
if __name__ == "__main__":
fire.Fire(main)