From ed06500d300e93ae3129a035a364117adcb7d361 Mon Sep 17 00:00:00 2001 From: Hossein Falaki Date: Mon, 30 Dec 2013 19:30:42 -0800 Subject: [PATCH] Added Java API for countApproxDistinctByKey --- .../apache/spark/api/java/JavaPairRDD.scala | 36 +++++++++++++++++++ 1 file changed, 36 insertions(+) diff --git a/core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala b/core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala index 363667fa86353..55c87450ac65a 100644 --- a/core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala +++ b/core/src/main/scala/org/apache/spark/api/java/JavaPairRDD.scala @@ -611,6 +611,42 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kClassTag: ClassTag[K * Return an RDD with the values of each tuple. */ def values(): JavaRDD[V] = JavaRDD.fromRDD[V](rdd.map(_._2)) + + /** + * Return approximate number of distinct values for each key in this RDD. + * The accuracy of approximation can be controlled through the relative standard deviation + * (relativeSD) parameter, which also controls the amount of memory used. Lower values result in + * more accurate counts but increase the memory footprint and vise versa. Uses the provided + * Partitioner to partition the output RDD. + */ + def countApproxDistinctByKey(relativeSD: Double, partitioner: Partitioner): JavaRDD[(K, Long)] = { + rdd.countApproxDistinctByKey(relativeSD, partitioner) + } + + /** + * Return approximate number of distinct values for each key this RDD. + * The accuracy of approximation can be controlled through the relative standard deviation + * (relativeSD) parameter, which also controls the amount of memory used. Lower values result in + * more accurate counts but increase the memory footprint and vise versa. The default value of + * relativeSD is 0.05. Hash-partitions the output RDD using the existing partitioner/parallelism + * level. + */ + def countApproxDistinctByKey(relativeSD: Double = 0.05): JavaRDD[(K, Long)] = { + rdd.countApproxDistinctByKey(relativeSD) + } + + + /** + * Return approximate number of distinct values for each key in this RDD. + * The accuracy of approximation can be controlled through the relative standard deviation + * (relativeSD) parameter, which also controls the amount of memory used. Lower values result in + * more accurate counts but increase the memory footprint and vise versa. HashPartitions the + * output RDD into numPartitions. + * + */ + def countApproxDistinctByKey(relativeSD: Double, numPartitions: Int): JavaRDD[(K, Long)] = { + rdd.countApproxDistinctByKey(relativeSD, numPartitions) + } } object JavaPairRDD {