forked from dmlc/xgboost
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli_main.cc
360 lines (341 loc) · 11.8 KB
/
cli_main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*!
* Copyright 2014 by Contributors
* \file cli_main.cc
* \brief The command line interface program of xgboost.
* This file is not included in dynamic library.
*/
// Copyright 2014 by Contributors
#define _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_DEPRECATE
#define NOMINMAX
#include <xgboost/learner.h>
#include <xgboost/data.h>
#include <xgboost/logging.h>
#include <dmlc/timer.h>
#include <iomanip>
#include <ctime>
#include <string>
#include <cstdio>
#include <cstring>
#include <vector>
#include "./common/sync.h"
#include "./common/config.h"
namespace xgboost {
enum CLITask {
kTrain = 0,
kDump2Text = 1,
kPredict = 2
};
struct CLIParam : public dmlc::Parameter<CLIParam> {
/*! \brief the task name */
int task;
/*! \brief whether silent */
int silent;
/*! \brief whether evaluate training statistics */
bool eval_train;
/*! \brief number of boosting iterations */
int num_round;
/*! \brief the period to save the model, 0 means only save the final round model */
int save_period;
/*! \brief the path of training set */
std::string train_path;
/*! \brief path of test dataset */
std::string test_path;
/*! \brief the path of test model file, or file to restart training */
std::string model_in;
/*! \brief the path of final model file, to be saved */
std::string model_out;
/*! \brief the path of directory containing the saved models */
std::string model_dir;
/*! \brief name of predict file */
std::string name_pred;
/*! \brief data split mode */
int dsplit;
/*!\brief limit number of trees in prediction */
int ntree_limit;
/*!\brief whether to directly output margin value */
bool pred_margin;
/*! \brief whether dump statistics along with model */
int dump_stats;
/*! \brief name of feature map */
std::string name_fmap;
/*! \brief name of dump file */
std::string name_dump;
/*! \brief the paths of validation data sets */
std::vector<std::string> eval_data_paths;
/*! \brief the names of the evaluation data used in output log */
std::vector<std::string> eval_data_names;
/*! \brief all the configurations */
std::vector<std::pair<std::string, std::string> > cfg;
// declare parameters
DMLC_DECLARE_PARAMETER(CLIParam) {
// NOTE: declare everything except eval_data_paths.
DMLC_DECLARE_FIELD(task).set_default(kTrain)
.add_enum("train", kTrain)
.add_enum("dump", kDump2Text)
.add_enum("pred", kPredict)
.describe("Task to be performed by the CLI program.");
DMLC_DECLARE_FIELD(silent).set_default(0).set_range(0, 2)
.describe("Silent level during the task.");
DMLC_DECLARE_FIELD(eval_train).set_default(false)
.describe("Whether evaluate on training data during training.");
DMLC_DECLARE_FIELD(num_round).set_default(10).set_lower_bound(1)
.describe("Number of boosting iterations");
DMLC_DECLARE_FIELD(save_period).set_default(0).set_lower_bound(0)
.describe("The period to save the model, 0 means only save final model.");
DMLC_DECLARE_FIELD(train_path).set_default("NULL")
.describe("Training data path.");
DMLC_DECLARE_FIELD(test_path).set_default("NULL")
.describe("Test data path.");
DMLC_DECLARE_FIELD(model_in).set_default("NULL")
.describe("Input model path, if any.");
DMLC_DECLARE_FIELD(model_out).set_default("NULL")
.describe("Output model path, if any.");
DMLC_DECLARE_FIELD(model_dir).set_default("./")
.describe("Output directory of period checkpoint.");
DMLC_DECLARE_FIELD(name_pred).set_default("pred.txt")
.describe("Name of the prediction file.");
DMLC_DECLARE_FIELD(dsplit).set_default(0)
.add_enum("auto", 0)
.add_enum("col", 1)
.add_enum("row", 2)
.describe("Data split mode.");
DMLC_DECLARE_FIELD(ntree_limit).set_default(0).set_lower_bound(0)
.describe("Number of trees used for prediction, 0 means use all trees.");
DMLC_DECLARE_FIELD(pred_margin).set_default(false)
.describe("Whether to predict margin value instead of probability.");
DMLC_DECLARE_FIELD(dump_stats).set_default(false)
.describe("Whether dump the model statistics.");
DMLC_DECLARE_FIELD(name_fmap).set_default("NULL")
.describe("Name of the feature map file.");
DMLC_DECLARE_FIELD(name_dump).set_default("dump.txt")
.describe("Name of the output dump text file.");
// alias
DMLC_DECLARE_ALIAS(train_path, data);
DMLC_DECLARE_ALIAS(test_path, test:data);
DMLC_DECLARE_ALIAS(name_fmap, fmap);
}
// customized configure function of CLIParam
inline void Configure(const std::vector<std::pair<std::string, std::string> >& cfg) {
this->cfg = cfg;
this->InitAllowUnknown(cfg);
for (const auto& kv : cfg) {
if (!strncmp("eval[", kv.first.c_str(), 5)) {
char evname[256];
CHECK_EQ(sscanf(kv.first.c_str(), "eval[%[^]]", evname), 1)
<< "must specify evaluation name for display";
eval_data_names.push_back(std::string(evname));
eval_data_paths.push_back(kv.second);
}
}
// constraint.
if (name_pred == "stdout") {
save_period = 0;
silent = 1;
}
if (dsplit == 0 && rabit::IsDistributed()) {
dsplit = 2;
}
if (rabit::GetRank() != 0) {
silent = 2;
}
}
};
DMLC_REGISTER_PARAMETER(CLIParam);
void CLITrain(const CLIParam& param) {
if (rabit::IsDistributed()) {
std::string pname = rabit::GetProcessorName();
LOG(CONSOLE) << "start " << pname << ":" << rabit::GetRank();
}
// load in data.
std::shared_ptr<DMatrix> dtrain(
DMatrix::Load(param.train_path, param.silent != 0, param.dsplit == 2));
std::vector<std::shared_ptr<DMatrix> > deval;
std::vector<std::shared_ptr<DMatrix> > cache_mats;
std::vector<DMatrix*> eval_datasets;
cache_mats.push_back(dtrain);
for (size_t i = 0; i < param.eval_data_names.size(); ++i) {
deval.emplace_back(
std::shared_ptr<DMatrix>(DMatrix::Load(param.eval_data_paths[i],
param.silent != 0, param.dsplit == 2)));
eval_datasets.push_back(deval.back().get());
cache_mats.push_back(deval.back());
}
std::vector<std::string> eval_data_names = param.eval_data_names;
if (param.eval_train) {
eval_datasets.push_back(dtrain.get());
eval_data_names.push_back(std::string("train"));
}
// initialize the learner.
std::unique_ptr<Learner> learner(Learner::Create(cache_mats));
int version = rabit::LoadCheckPoint(learner.get());
if (version == 0) {
// initializ the model if needed.
if (param.model_in != "NULL") {
std::unique_ptr<dmlc::Stream> fi(
dmlc::Stream::Create(param.model_in.c_str(), "r"));
learner->Load(fi.get());
learner->Configure(param.cfg);
} else {
learner->Configure(param.cfg);
learner->InitModel();
}
}
// start training.
const double start = dmlc::GetTime();
for (int i = version / 2; i < param.num_round; ++i) {
double elapsed = dmlc::GetTime() - start;
if (version % 2 == 0) {
if (param.silent == 0) {
LOG(CONSOLE) << "boosting round " << i << ", " << elapsed << " sec elapsed";
}
learner->UpdateOneIter(i, dtrain.get());
if (learner->AllowLazyCheckPoint()) {
rabit::LazyCheckPoint(learner.get());
} else {
rabit::CheckPoint(learner.get());
}
version += 1;
}
CHECK_EQ(version, rabit::VersionNumber());
std::string res = learner->EvalOneIter(i, eval_datasets, eval_data_names);
if (rabit::IsDistributed()) {
if (rabit::GetRank() == 0) {
LOG(TRACKER) << res;
}
} else {
if (param.silent < 2) {
LOG(CONSOLE) << res;
}
}
if (param.save_period != 0 &&
(i + 1) % param.save_period == 0 &&
rabit::GetRank() == 0) {
std::ostringstream os;
os << param.model_dir << '/'
<< std::setfill('0') << std::setw(4)
<< i + 1 << ".model";
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(os.str().c_str(), "w"));
learner->Save(fo.get());
}
if (learner->AllowLazyCheckPoint()) {
rabit::LazyCheckPoint(learner.get());
} else {
rabit::CheckPoint(learner.get());
}
version += 1;
CHECK_EQ(version, rabit::VersionNumber());
}
// always save final round
if ((param.save_period == 0 || param.num_round % param.save_period != 0) &&
param.model_out != "NONE" &&
rabit::GetRank() == 0) {
std::ostringstream os;
if (param.model_out == "NULL") {
os << param.model_dir << '/'
<< std::setfill('0') << std::setw(4)
<< param.num_round << ".model";
} else {
os << param.model_out;
}
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(os.str().c_str(), "w"));
learner->Save(fo.get());
}
if (param.silent == 0) {
double elapsed = dmlc::GetTime() - start;
LOG(CONSOLE) << "update end, " << elapsed << " sec in all";
}
}
void CLIDump2Text(const CLIParam& param) {
FeatureMap fmap;
if (param.name_fmap != "NULL") {
std::unique_ptr<dmlc::Stream> fs(
dmlc::Stream::Create(param.name_fmap.c_str(), "r"));
dmlc::istream is(fs.get());
fmap.LoadText(is);
}
// load model
CHECK_NE(param.model_in, "NULL")
<< "Must specifiy model_in for dump";
std::unique_ptr<Learner> learner(Learner::Create({}));
std::unique_ptr<dmlc::Stream> fi(
dmlc::Stream::Create(param.model_in.c_str(), "r"));
learner->Configure(param.cfg);
learner->Load(fi.get());
// dump data
std::vector<std::string> dump = learner->Dump2Text(fmap, param.dump_stats);
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(param.name_dump.c_str(), "w"));
dmlc::ostream os(fo.get());
for (size_t i = 0; i < dump.size(); ++i) {
os << "booster[" << i << "]:\n";
os << dump[i];
}
// force flush before fo destruct.
os.set_stream(nullptr);
}
void CLIPredict(const CLIParam& param) {
CHECK_NE(param.test_path, "NULL")
<< "Test dataset parameter test:data must be specified.";
// load data
std::unique_ptr<DMatrix> dtest(
DMatrix::Load(param.test_path, param.silent != 0, param.dsplit == 2));
// load model
CHECK_NE(param.model_in, "NULL")
<< "Must specifiy model_in for dump";
std::unique_ptr<Learner> learner(Learner::Create({}));
std::unique_ptr<dmlc::Stream> fi(
dmlc::Stream::Create(param.model_in.c_str(), "r"));
learner->Configure(param.cfg);
learner->Load(fi.get());
if (param.silent == 0) {
LOG(CONSOLE) << "start prediction...";
}
std::vector<float> preds;
learner->Predict(dtest.get(), param.pred_margin, &preds, param.ntree_limit);
if (param.silent == 0) {
LOG(CONSOLE) << "writing prediction to " << param.name_pred;
}
std::unique_ptr<dmlc::Stream> fo(
dmlc::Stream::Create(param.name_pred.c_str(), "w"));
dmlc::ostream os(fo.get());
for (float p : preds) {
os << p << '\n';
}
// force flush before fo destruct.
os.set_stream(nullptr);
}
int CLIRunTask(int argc, char *argv[]) {
if (argc < 2) {
printf("Usage: <config>\n");
return 0;
}
rabit::Init(argc, argv);
std::vector<std::pair<std::string, std::string> > cfg;
cfg.push_back(std::make_pair("seed", "0"));
common::ConfigIterator itr(argv[1]);
while (itr.Next()) {
cfg.push_back(std::make_pair(std::string(itr.name()), std::string(itr.val())));
}
for (int i = 2; i < argc; ++i) {
char name[256], val[256];
if (sscanf(argv[i], "%[^=]=%s", name, val) == 2) {
cfg.push_back(std::make_pair(std::string(name), std::string(val)));
}
}
CLIParam param;
param.Configure(cfg);
switch (param.task) {
case kTrain: CLITrain(param); break;
case kDump2Text: CLIDump2Text(param); break;
case kPredict: CLIPredict(param); break;
}
rabit::Finalize();
return 0;
}
} // namespace xgboost
int main(int argc, char *argv[]) {
return xgboost::CLIRunTask(argc, argv);
}