This tutorial introduces
Like the xgboost python module, xgboost4j uses DMatrix
to handle data,
libsvm txt format file, sparse matrix in CSR/CSC format, and dense matrix is
supported.
- To import
DMatrix
:
import org.dmlc.xgboost4j.DMatrix;
- To load libsvm text format file, the usage is like :
DMatrix dmat = new DMatrix("train.svm.txt");
-
To load sparse matrix in CSR/CSC format is a little complicated, the usage is like : suppose a sparse matrix : 1 0 2 0 4 0 0 3 3 1 2 0
for CSR format
long[] rowHeaders = new long[] {0,2,4,7};
float[] data = new float[] {1f,2f,4f,3f,3f,1f,2f};
int[] colIndex = new int[] {0,2,0,3,0,1,2};
DMatrix dmat = new DMatrix(rowHeaders, colIndex, data, DMatrix.SparseType.CSR);
for CSC format
long[] colHeaders = new long[] {0,3,4,6,7};
float[] data = new float[] {1f,4f,3f,1f,2f,2f,3f};
int[] rowIndex = new int[] {0,1,2,2,0,2,1};
DMatrix dmat = new DMatrix(colHeaders, rowIndex, data, DMatrix.SparseType.CSC);
- To load 3*2 dense matrix, the usage is like : suppose a matrix : 1 2 3 4 5 6
float[] data = new float[] {1f,2f,3f,4f,5f,6f};
int nrow = 3;
int ncol = 2;
float missing = 0.0f;
DMatrix dmat = new Matrix(data, nrow, ncol, missing);
- To set weight :
float[] weights = new float[] {1f,2f,1f};
dmat.setWeight(weights);
-
in xgboost4j any
Iterable<Entry<String, Object>>
object could be used as parameters. -
to set parameters, for non-multiple value params, you can simply use entrySet of an Map:
Map<String, Object> paramMap = new HashMap<>() {
{
put("eta", 1.0);
put("max_depth", 2);
put("silent", 1);
put("objective", "binary:logistic");
put("eval_metric", "logloss");
}
};
Iterable<Entry<String, Object>> params = paramMap.entrySet();
- for the situation that multiple values with same param key, List<Entry<String, Object>> would be a good choice, e.g. :
List<Entry<String, Object>> params = new ArrayList<Entry<String, Object>>() {
{
add(new SimpleEntry<String, Object>("eta", 1.0));
add(new SimpleEntry<String, Object>("max_depth", 2.0));
add(new SimpleEntry<String, Object>("silent", 1));
add(new SimpleEntry<String, Object>("objective", "binary:logistic"));
}
};
With parameters and data, you are able to train a booster model.
- Import
Trainer
andBooster
:
import org.dmlc.xgboost4j.Booster;
import org.dmlc.xgboost4j.util.Trainer;
- Training
DMatrix trainMat = new DMatrix("train.svm.txt");
DMatrix validMat = new DMatrix("valid.svm.txt");
//specify a watchList to see the performance
//any Iterable<Entry<String, DMatrix>> object could be used as watchList
List<Entry<String, DMatrix>> watchs = new ArrayList<>();
watchs.add(new SimpleEntry<>("train", trainMat));
watchs.add(new SimpleEntry<>("test", testMat));
int round = 2;
Booster booster = Trainer.train(params, trainMat, round, watchs, null, null);
- Saving model After training, you can save model and dump it out.
booster.saveModel("model.bin");
- Dump Model and Feature Map
booster.dumpModel("modelInfo.txt", false)
//dump with featureMap
booster.dumpModel("modelInfo.txt", "featureMap.txt", false)
- Load a model
Params param = new Params() {
{
put("silent", 1);
put("nthread", 6);
}
};
Booster booster = new Booster(param, "model.bin");
after training and loading a model, you use it to predict other data, the predict results will be a two-dimension float array (nsample, nclass), for predict leaf, it would be (nsample, nclass*ntrees)
DMatrix dtest = new DMatrix("test.svm.txt");
//predict
float[][] predicts = booster.predict(dtest);
//predict leaf
float[][] leafPredicts = booster.predict(dtest, 0, true);