diff --git a/R-package/R/callbacks.R b/R-package/R/callbacks.R index eed12ef45014..ce25eddeba39 100644 --- a/R-package/R/callbacks.R +++ b/R-package/R/callbacks.R @@ -168,7 +168,7 @@ cb.evaluation.log <- function() { #' at the beginning of each iteration. #' #' Note that when training is resumed from some previous model, and a function is used to -#' reset a parameter value, the \code{nround} argument in this function would be the +#' reset a parameter value, the \code{nrounds} argument in this function would be the #' the number of boosting rounds in the current training. #' #' Callback function expects the following values to be set in its calling frame: diff --git a/R-package/R/xgb.create.features.R b/R-package/R/xgb.create.features.R index c3d3da069fa2..b8be64922465 100644 --- a/R-package/R/xgb.create.features.R +++ b/R-package/R/xgb.create.features.R @@ -52,9 +52,9 @@ #' dtest <- xgb.DMatrix(data = agaricus.test$data, label = agaricus.test$label) #' #' param <- list(max_depth=2, eta=1, silent=1, objective='binary:logistic') -#' nround = 4 +#' nrounds = 4 #' -#' bst = xgb.train(params = param, data = dtrain, nrounds = nround, nthread = 2) +#' bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2) #' #' # Model accuracy without new features #' accuracy.before <- sum((predict(bst, agaricus.test$data) >= 0.5) == agaricus.test$label) / @@ -68,7 +68,7 @@ #' new.dtrain <- xgb.DMatrix(data = new.features.train, label = agaricus.train$label) #' new.dtest <- xgb.DMatrix(data = new.features.test, label = agaricus.test$label) #' watchlist <- list(train = new.dtrain) -#' bst <- xgb.train(params = param, data = new.dtrain, nrounds = nround, nthread = 2) +#' bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2) #' #' # Model accuracy with new features #' accuracy.after <- sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label) / diff --git a/R-package/R/xgb.train.R b/R-package/R/xgb.train.R index fa8285473112..80ade2b43a37 100644 --- a/R-package/R/xgb.train.R +++ b/R-package/R/xgb.train.R @@ -22,7 +22,7 @@ #' \item \code{gamma} minimum loss reduction required to make a further partition on a leaf node of the tree. the larger, the more conservative the algorithm will be. #' \item \code{max_depth} maximum depth of a tree. Default: 6 #' \item \code{min_child_weight} minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. In linear regression mode, this simply corresponds to minimum number of instances needed to be in each node. The larger, the more conservative the algorithm will be. Default: 1 -#' \item \code{subsample} subsample ratio of the training instance. Setting it to 0.5 means that xgboost randomly collected half of the data instances to grow trees and this will prevent overfitting. It makes computation shorter (because less data to analyse). It is advised to use this parameter with \code{eta} and increase \code{nround}. Default: 1 +#' \item \code{subsample} subsample ratio of the training instance. Setting it to 0.5 means that xgboost randomly collected half of the data instances to grow trees and this will prevent overfitting. It makes computation shorter (because less data to analyse). It is advised to use this parameter with \code{eta} and increase \code{nrounds}. Default: 1 #' \item \code{colsample_bytree} subsample ratio of columns when constructing each tree. Default: 1 #' \item \code{num_parallel_tree} Experimental parameter. number of trees to grow per round. Useful to test Random Forest through Xgboost (set \code{colsample_bytree < 1}, \code{subsample < 1} and \code{round = 1}) accordingly. Default: 1 #' \item \code{monotone_constraints} A numerical vector consists of \code{1}, \code{0} and \code{-1} with its length equals to the number of features in the training data. \code{1} is increasing, \code{-1} is decreasing and \code{0} is no constraint. diff --git a/R-package/demo/cross_validation.R b/R-package/demo/cross_validation.R index 652076165bdd..d074552cc4b6 100644 --- a/R-package/demo/cross_validation.R +++ b/R-package/demo/cross_validation.R @@ -5,20 +5,20 @@ data(agaricus.test, package='xgboost') dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label) -nround <- 2 +nrounds <- 2 param <- list(max_depth=2, eta=1, silent=1, nthread=2, objective='binary:logistic') cat('running cross validation\n') # do cross validation, this will print result out as # [iteration] metric_name:mean_value+std_value # std_value is standard deviation of the metric -xgb.cv(param, dtrain, nround, nfold=5, metrics={'error'}) +xgb.cv(param, dtrain, nrounds, nfold=5, metrics={'error'}) cat('running cross validation, disable standard deviation display\n') # do cross validation, this will print result out as # [iteration] metric_name:mean_value+std_value # std_value is standard deviation of the metric -xgb.cv(param, dtrain, nround, nfold=5, +xgb.cv(param, dtrain, nrounds, nfold=5, metrics='error', showsd = FALSE) ### @@ -43,9 +43,9 @@ evalerror <- function(preds, dtrain) { param <- list(max_depth=2, eta=1, silent=1, objective = logregobj, eval_metric = evalerror) # train with customized objective -xgb.cv(params = param, data = dtrain, nrounds = nround, nfold = 5) +xgb.cv(params = param, data = dtrain, nrounds = nrounds, nfold = 5) # do cross validation with prediction values for each fold -res <- xgb.cv(params = param, data = dtrain, nrounds = nround, nfold = 5, prediction = TRUE) +res <- xgb.cv(params = param, data = dtrain, nrounds = nrounds, nfold = 5, prediction = TRUE) res$evaluation_log length(res$pred) diff --git a/R-package/demo/predict_first_ntree.R b/R-package/demo/predict_first_ntree.R index c8119c594c5c..8934c55e2b7b 100644 --- a/R-package/demo/predict_first_ntree.R +++ b/R-package/demo/predict_first_ntree.R @@ -7,10 +7,10 @@ dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label) param <- list(max_depth=2, eta=1, silent=1, objective='binary:logistic') watchlist <- list(eval = dtest, train = dtrain) -nround = 2 +nrounds = 2 # training the model for two rounds -bst = xgb.train(param, dtrain, nround, nthread = 2, watchlist) +bst = xgb.train(param, dtrain, nrounds, nthread = 2, watchlist) cat('start testing prediction from first n trees\n') labels <- getinfo(dtest,'label') diff --git a/R-package/demo/predict_leaf_indices.R b/R-package/demo/predict_leaf_indices.R index 24341d45488e..6032138c366d 100644 --- a/R-package/demo/predict_leaf_indices.R +++ b/R-package/demo/predict_leaf_indices.R @@ -11,10 +11,10 @@ dtrain <- xgb.DMatrix(data = agaricus.train$data, label = agaricus.train$label) dtest <- xgb.DMatrix(data = agaricus.test$data, label = agaricus.test$label) param <- list(max_depth=2, eta=1, silent=1, objective='binary:logistic') -nround = 4 +nrounds = 4 # training the model for two rounds -bst = xgb.train(params = param, data = dtrain, nrounds = nround, nthread = 2) +bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2) # Model accuracy without new features accuracy.before <- sum((predict(bst, agaricus.test$data) >= 0.5) == agaricus.test$label) / length(agaricus.test$label) @@ -43,7 +43,7 @@ new.features.test <- create.new.tree.features(bst, agaricus.test$data) new.dtrain <- xgb.DMatrix(data = new.features.train, label = agaricus.train$label) new.dtest <- xgb.DMatrix(data = new.features.test, label = agaricus.test$label) watchlist <- list(train = new.dtrain) -bst <- xgb.train(params = param, data = new.dtrain, nrounds = nround, nthread = 2) +bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2) # Model accuracy with new features accuracy.after <- sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label) / length(agaricus.test$label) diff --git a/R-package/man/cb.reset.parameters.Rd b/R-package/man/cb.reset.parameters.Rd index 66f2a1c4844f..38e2989bb0b4 100644 --- a/R-package/man/cb.reset.parameters.Rd +++ b/R-package/man/cb.reset.parameters.Rd @@ -22,7 +22,7 @@ This is a "pre-iteration" callback function used to reset booster's parameters at the beginning of each iteration. Note that when training is resumed from some previous model, and a function is used to -reset a parameter value, the \code{nround} argument in this function would be the +reset a parameter value, the \code{nrounds} argument in this function would be the the number of boosting rounds in the current training. Callback function expects the following values to be set in its calling frame: diff --git a/R-package/man/xgb.create.features.Rd b/R-package/man/xgb.create.features.Rd index 2f3e5d099aee..1c39c088445c 100644 --- a/R-package/man/xgb.create.features.Rd +++ b/R-package/man/xgb.create.features.Rd @@ -63,9 +63,9 @@ dtrain <- xgb.DMatrix(data = agaricus.train$data, label = agaricus.train$label) dtest <- xgb.DMatrix(data = agaricus.test$data, label = agaricus.test$label) param <- list(max_depth=2, eta=1, silent=1, objective='binary:logistic') -nround = 4 +nrounds = 4 -bst = xgb.train(params = param, data = dtrain, nrounds = nround, nthread = 2) +bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2) # Model accuracy without new features accuracy.before <- sum((predict(bst, agaricus.test$data) >= 0.5) == agaricus.test$label) / @@ -79,7 +79,7 @@ new.features.test <- xgb.create.features(model = bst, agaricus.test$data) new.dtrain <- xgb.DMatrix(data = new.features.train, label = agaricus.train$label) new.dtest <- xgb.DMatrix(data = new.features.test, label = agaricus.test$label) watchlist <- list(train = new.dtrain) -bst <- xgb.train(params = param, data = new.dtrain, nrounds = nround, nthread = 2) +bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2) # Model accuracy with new features accuracy.after <- sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label) / diff --git a/R-package/man/xgb.train.Rd b/R-package/man/xgb.train.Rd index 868ad2034994..f13b52ebcaf8 100644 --- a/R-package/man/xgb.train.Rd +++ b/R-package/man/xgb.train.Rd @@ -35,7 +35,7 @@ xgboost(data = NULL, label = NULL, missing = NA, weight = NULL, \item \code{gamma} minimum loss reduction required to make a further partition on a leaf node of the tree. the larger, the more conservative the algorithm will be. \item \code{max_depth} maximum depth of a tree. Default: 6 \item \code{min_child_weight} minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in a leaf node with the sum of instance weight less than min_child_weight, then the building process will give up further partitioning. In linear regression mode, this simply corresponds to minimum number of instances needed to be in each node. The larger, the more conservative the algorithm will be. Default: 1 - \item \code{subsample} subsample ratio of the training instance. Setting it to 0.5 means that xgboost randomly collected half of the data instances to grow trees and this will prevent overfitting. It makes computation shorter (because less data to analyse). It is advised to use this parameter with \code{eta} and increase \code{nround}. Default: 1 + \item \code{subsample} subsample ratio of the training instance. Setting it to 0.5 means that xgboost randomly collected half of the data instances to grow trees and this will prevent overfitting. It makes computation shorter (because less data to analyse). It is advised to use this parameter with \code{eta} and increase \code{nrounds}. Default: 1 \item \code{colsample_bytree} subsample ratio of columns when constructing each tree. Default: 1 \item \code{num_parallel_tree} Experimental parameter. number of trees to grow per round. Useful to test Random Forest through Xgboost (set \code{colsample_bytree < 1}, \code{subsample < 1} and \code{round = 1}) accordingly. Default: 1 \item \code{monotone_constraints} A numerical vector consists of \code{1}, \code{0} and \code{-1} with its length equals to the number of features in the training data. \code{1} is increasing, \code{-1} is decreasing and \code{0} is no constraint. diff --git a/R-package/tests/testthat/test_gc_safety.R b/R-package/tests/testthat/test_gc_safety.R index 795621346b35..b90f0f4ca3d0 100644 --- a/R-package/tests/testthat/test_gc_safety.R +++ b/R-package/tests/testthat/test_gc_safety.R @@ -9,7 +9,7 @@ test_that("train and prediction when gctorture is on", { test <- agaricus.test gctorture(TRUE) bst <- xgboost(data = train$data, label = train$label, max.depth = 2, - eta = 1, nthread = 2, nround = 2, objective = "binary:logistic") + eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic") pred <- predict(bst, test$data) gctorture(FALSE) }) diff --git a/demo/kaggle-higgs/higgs-train.R b/demo/kaggle-higgs/higgs-train.R index 0c00eab25bd8..426d1f6ac26a 100644 --- a/demo/kaggle-higgs/higgs-train.R +++ b/demo/kaggle-higgs/higgs-train.R @@ -24,9 +24,9 @@ param <- list("objective" = "binary:logitraw", "silent" = 1, "nthread" = 16) watchlist <- list("train" = xgmat) -nround = 120 +nrounds = 120 print ("loading data end, start to boost trees") -bst = xgb.train(param, xgmat, nround, watchlist ); +bst = xgb.train(param, xgmat, nrounds, watchlist ); # save out model xgb.save(bst, "higgs.model") print ('finish training') diff --git a/demo/kaggle-higgs/speedtest.R b/demo/kaggle-higgs/speedtest.R index d9f45f656973..d17d8a11a22d 100644 --- a/demo/kaggle-higgs/speedtest.R +++ b/demo/kaggle-higgs/speedtest.R @@ -39,9 +39,9 @@ for (i in 1:length(threads)){ "silent" = 1, "nthread" = thread) watchlist <- list("train" = xgmat) - nround = 120 + nrounds = 120 print ("loading data end, start to boost trees") - bst = xgb.train(param, xgmat, nround, watchlist ); + bst = xgb.train(param, xgmat, nrounds, watchlist ); # save out model xgb.save(bst, "higgs.model") print ('finish training') diff --git a/demo/kaggle-otto/otto_train_pred.R b/demo/kaggle-otto/otto_train_pred.R index 88155e3dc1f6..ec0f85ea73af 100644 --- a/demo/kaggle-otto/otto_train_pred.R +++ b/demo/kaggle-otto/otto_train_pred.R @@ -23,13 +23,13 @@ param <- list("objective" = "multi:softprob", "nthread" = 8) # Run Cross Validation -cv.nround = 50 +cv.nrounds = 50 bst.cv = xgb.cv(param=param, data = x[trind,], label = y, - nfold = 3, nrounds=cv.nround) + nfold = 3, nrounds=cv.nrounds) # Train the model -nround = 50 -bst = xgboost(param=param, data = x[trind,], label = y, nrounds=nround) +nrounds = 50 +bst = xgboost(param=param, data = x[trind,], label = y, nrounds=nrounds) # Make prediction pred = predict(bst,x[teind,]) diff --git a/demo/kaggle-otto/understandingXGBoostModel.Rmd b/demo/kaggle-otto/understandingXGBoostModel.Rmd index e15d321efd6b..b37c407faca2 100644 --- a/demo/kaggle-otto/understandingXGBoostModel.Rmd +++ b/demo/kaggle-otto/understandingXGBoostModel.Rmd @@ -121,19 +121,19 @@ param <- list("objective" = "multi:softprob", "eval_metric" = "mlogloss", "num_class" = numberOfClasses) -cv.nround <- 5 +cv.nrounds <- 5 cv.nfold <- 3 bst.cv = xgb.cv(param=param, data = trainMatrix, label = y, - nfold = cv.nfold, nrounds = cv.nround) + nfold = cv.nfold, nrounds = cv.nrounds) ``` > As we can see the error rate is low on the test dataset (for a 5mn trained model). Finally, we are ready to train the real model!!! ```{r modelTraining} -nround = 50 -bst = xgboost(param=param, data = trainMatrix, label = y, nrounds=nround) +nrounds = 50 +bst = xgboost(param=param, data = trainMatrix, label = y, nrounds=nrounds) ``` Model understanding @@ -142,7 +142,7 @@ Model understanding Feature importance ------------------ -So far, we have built a model made of **`r nround`** trees. +So far, we have built a model made of **`r nrounds`** trees. To build a tree, the dataset is divided recursively several times. At the end of the process, you get groups of observations (here, these observations are properties regarding **Otto** products). diff --git a/doc/R-package/discoverYourData.md b/doc/R-package/discoverYourData.md index a4d35d0b21e7..bffdcd559771 100644 --- a/doc/R-package/discoverYourData.md +++ b/doc/R-package/discoverYourData.md @@ -222,7 +222,7 @@ The code below is very usual. For more information, you can look at the document ```r bst <- xgboost(data = sparse_matrix, label = output_vector, max.depth = 4, - eta = 1, nthread = 2, nround = 10,objective = "binary:logistic") + eta = 1, nthread = 2, nrounds = 10,objective = "binary:logistic") ``` ``` @@ -244,7 +244,7 @@ A model which fits too well may [overfit](http://en.wikipedia.org/wiki/Overfitti > Here you can see the numbers decrease until line 7 and then increase. > -> It probably means we are overfitting. To fix that I should reduce the number of rounds to `nround = 4`. I will let things like that because I don't really care for the purpose of this example :-) +> It probably means we are overfitting. To fix that I should reduce the number of rounds to `nrounds = 4`. I will let things like that because I don't really care for the purpose of this example :-) Feature importance ------------------ @@ -448,7 +448,7 @@ train <- agaricus.train test <- agaricus.test #Random Forestâ„¢ - 1000 trees -bst <- xgboost(data = train$data, label = train$label, max.depth = 4, num_parallel_tree = 1000, subsample = 0.5, colsample_bytree =0.5, nround = 1, objective = "binary:logistic") +bst <- xgboost(data = train$data, label = train$label, max.depth = 4, num_parallel_tree = 1000, subsample = 0.5, colsample_bytree =0.5, nrounds = 1, objective = "binary:logistic") ``` ``` @@ -457,7 +457,7 @@ bst <- xgboost(data = train$data, label = train$label, max.depth = 4, num_parall ```r #Boosting - 3 rounds -bst <- xgboost(data = train$data, label = train$label, max.depth = 4, nround = 3, objective = "binary:logistic") +bst <- xgboost(data = train$data, label = train$label, max.depth = 4, nrounds = 3, objective = "binary:logistic") ``` ``` diff --git a/doc/R-package/xgboostPresentation.md b/doc/R-package/xgboostPresentation.md index 502aed2f0e1a..97fdd5d07f51 100644 --- a/doc/R-package/xgboostPresentation.md +++ b/doc/R-package/xgboostPresentation.md @@ -178,11 +178,11 @@ We will train decision tree model using the following parameters: * `objective = "binary:logistic"`: we will train a binary classification model ; * `max.deph = 2`: the trees won't be deep, because our case is very simple ; * `nthread = 2`: the number of cpu threads we are going to use; -* `nround = 2`: there will be two passes on the data, the second one will enhance the model by further reducing the difference between ground truth and prediction. +* `nrounds = 2`: there will be two passes on the data, the second one will enhance the model by further reducing the difference between ground truth and prediction. ```r -bstSparse <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nthread = 2, nround = 2, objective = "binary:logistic") +bstSparse <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic") ``` ``` @@ -200,7 +200,7 @@ Alternatively, you can put your dataset in a *dense* matrix, i.e. a basic **R** ```r -bstDense <- xgboost(data = as.matrix(train$data), label = train$label, max.depth = 2, eta = 1, nthread = 2, nround = 2, objective = "binary:logistic") +bstDense <- xgboost(data = as.matrix(train$data), label = train$label, max.depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic") ``` ``` @@ -215,7 +215,7 @@ bstDense <- xgboost(data = as.matrix(train$data), label = train$label, max.depth ```r dtrain <- xgb.DMatrix(data = train$data, label = train$label) -bstDMatrix <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nround = 2, objective = "binary:logistic") +bstDMatrix <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic") ``` ``` @@ -232,13 +232,13 @@ One of the simplest way to see the training progress is to set the `verbose` opt ```r # verbose = 0, no message -bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nround = 2, objective = "binary:logistic", verbose = 0) +bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic", verbose = 0) ``` ```r # verbose = 1, print evaluation metric -bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nround = 2, objective = "binary:logistic", verbose = 1) +bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic", verbose = 1) ``` ``` @@ -249,7 +249,7 @@ bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nround = 2, o ```r # verbose = 2, also print information about tree -bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nround = 2, objective = "binary:logistic", verbose = 2) +bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic", verbose = 2) ``` ``` @@ -372,7 +372,7 @@ For the purpose of this example, we use `watchlist` parameter. It is a list of ` ```r watchlist <- list(train=dtrain, test=dtest) -bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nround=2, watchlist=watchlist, objective = "binary:logistic") +bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nrounds=2, watchlist=watchlist, objective = "binary:logistic") ``` ``` @@ -380,7 +380,7 @@ bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nround=2, watchli ## [1] train-error:0.022263 test-error:0.021726 ``` -**XGBoost** has computed at each round the same average error metric than seen above (we set `nround` to 2, that is why we have two lines). Obviously, the `train-error` number is related to the training dataset (the one the algorithm learns from) and the `test-error` number to the test dataset. +**XGBoost** has computed at each round the same average error metric than seen above (we set `nrounds` to 2, that is why we have two lines). Obviously, the `train-error` number is related to the training dataset (the one the algorithm learns from) and the `test-error` number to the test dataset. Both training and test error related metrics are very similar, and in some way, it makes sense: what we have learned from the training dataset matches the observations from the test dataset. @@ -390,7 +390,7 @@ For a better understanding of the learning progression, you may want to have som ```r -bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nround=2, watchlist=watchlist, eval.metric = "error", eval.metric = "logloss", objective = "binary:logistic") +bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nrounds=2, watchlist=watchlist, eval.metric = "error", eval.metric = "logloss", objective = "binary:logistic") ``` ``` @@ -407,7 +407,7 @@ Until now, all the learnings we have performed were based on boosting trees. **X ```r -bst <- xgb.train(data=dtrain, booster = "gblinear", max.depth=2, nthread = 2, nround=2, watchlist=watchlist, eval.metric = "error", eval.metric = "logloss", objective = "binary:logistic") +bst <- xgb.train(data=dtrain, booster = "gblinear", max.depth=2, nthread = 2, nrounds=2, watchlist=watchlist, eval.metric = "error", eval.metric = "logloss", objective = "binary:logistic") ``` ``` @@ -445,7 +445,7 @@ dtrain2 <- xgb.DMatrix("dtrain.buffer") ``` ```r -bst <- xgb.train(data=dtrain2, max.depth=2, eta=1, nthread = 2, nround=2, watchlist=watchlist, objective = "binary:logistic") +bst <- xgb.train(data=dtrain2, max.depth=2, eta=1, nthread = 2, nrounds=2, watchlist=watchlist, objective = "binary:logistic") ``` ``` diff --git a/doc/get_started.rst b/doc/get_started.rst index 805cac09f6e7..bd1f6f981e99 100644 --- a/doc/get_started.rst +++ b/doc/get_started.rst @@ -42,7 +42,7 @@ R train <- agaricus.train test <- agaricus.test # fit model - bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nround = 2, + bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nrounds = 2, nthread = 2, objective = "binary:logistic") # predict pred <- predict(bst, test$data)