- run the following to automate the dataset download
cd input/src
python3 data.py
ganctober
│ LICENSE
│ README.md
│ requirements.txt
│
└──>cfg
│
└──>examples
│
└──>input
│ │
│ │
│ └──>data
│ | │
│ | └──>bert_base_uncased
| | |
│ | └──>birds
│ | |
| | └──>CUB_200_2011
│ │
│ └──>src
| | bert_emb.py
| | config.py
| | data.py
| | dataset_check.py
|
|
└──>old_outputs
|
└──>output
|
└──>src
│ │ args.py
| | dataset.py
│ │ engine.py
│ │ environment.yml
│ │ layers.py
│ │ train.py
│ │ util.py
- Download the following and extract/move them to the mentioned directories so that your workspace is similar to the one in the figure.
- Download the The Caltech-UCSD Birds-200-2011 (CUB) Dataset from: http://www.vision.caltech.edu/visipedia/CUB-200-2011.html and extract it in
input/data/
to createinput/data/CUB_200_2011
directory which containsimages
directory with the images we need for our task. - Read the README about the dataset on the webiste
- Download the text descriptions from: https://drive.google.com/open?id=0B3y_msrWZaXLT1BZdVdycDY5TEE and extract it in
input/data/
to createinput/data/birds
directory which containstext_c10
directory which contains all the annotations needed for our task. - Download bert_base_uncased from: https://www.kaggle.com/abhishek/bert-base-uncased and extract it in
input/data/
to createinput/data/bert_base_uncased
to create annotation bert embeddings