Skip to content

A Directed Acyclic Graph task dependency scheduler designed to simplify complex distributed pipelines

License

Notifications You must be signed in to change notification settings

sailthru/stolos

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Summary:

Stolos is a really neat task dependency scheduler! It manages the order of execution of interdependent applications, where an application is some piece of work that may have many variations. It is not aware of resources or network topologies and does not implement the bin packing algorithm that most people think of when they typically think of schedulers.

Stolos has the following features:

  • very simple to use (create an issue if something isn't obvious!)
  • characterizes dependencies between apps using a directed acyclic multi-graph
  • supports subtasks and dependencies on arbitrary subsets of tasks
  • decentralized and distributed, except that it centralizes work queues in ZooKeeper.
  • it does a couple things: manages job state, queues future work, and starts your applications.
  • excellent fault tolerance (via ZooKeeper) and as scalable as ZooKeeper
  • language agnostic (but written in Python).
  • "at least once" semantics (a guarantee that a job will successfully complete or fail after n retries)
  • designed for apps of various sizes: from large hadoop jobs to jobs that take a second to complete

What this is project not:

  • not aware of machines, nodes, network topologies and infrastructure
  • does not (and should not) auto-scale workers
  • not (necessarily) meant for "real-time" computation
  • This is not a grid scheduler (ie this does not solve a bin packing problem)
  • not a crontab. (in certain cases, this is not entirely true)
  • usually not meant to execute services, unless it makes sense to express the work those services do as batch jobs that depend on each other
  • requires that your dependency graph is completely deterministic.

Similar tools out there:

  • These are or can be used as directed acyclic graph schedulers, but they aren't designed to support variations of applications. Stolos is a directed acyclic multi- graph scheduler.

Requirements:

  • ZooKeeper
  • Some Python libraries (Kazoo, Networkx, Argparse, ...)

Optional requirements:

  • Apache Spark
  • GraphViz

Background: Inspiration

The inspiration for this project comes from the notion that the way we manage dependencies in our system defines how we characterize the work that exists in our system.

This project arose from the needs of Sailthru's Data Science team to manage execution of pipeline applications. The team has a complex data pipeline (build models, algorithms and applications that support many clients), and this leads to a wide variety of work we have to perform within our system. Some work is very specific. For instance, we need to train the same predictive model once per (client, date). Other tasks might be more complex: a cross-client analysis across various groups of clients and ranges of dates. In either case, we cannot return results without having previously identified data sets we need, transformed them, created some extra features on the data, and built the model or analysis.

Since we have hundreds or thousands of instances of any particular application, we cannot afford to manually verify that work gets completed. Therefore, we need a system to manage execution of applications.

Concept: Application Dependencies as a Directed Graph

We can model dependencies between applications as a directed graph, where nodes are apps and edges are dependency requirements. The following section explains how Stolos uses a directed graph to define application dependencies.

We start with an assumption that our applications depend on each other:

       Scenario 1:               Scenario 2:

          App_A                     App_A
            |                        /     \
            v                       v       v
          App_B                  App_B   App_C
                                    |       |
                                    |      App_D
                                    |       |
                                    v       v
                                      App_E

In Scenario 1, App_B cannot run until App_A completes. In Scenario 2, App_B and App_C cannot run until App_A completes, but App_B and App_C can run in any order. Also, App_D requires App_C to complete, but doesn't care if App_B has run yet. App_E requires App_D and App_B to have completed.

By design, we also support the scenario where one application expands into multiple subtasks, or jobs. The reason for this is that if we run a hundred or thousand variations of the one app, the results of each job (ie subtask) may bubble down through the dependency graph independently of other jobs.

There are several ways jobs may depend on other jobs, and this system captures all deterministic dependency relationships (as far as we can tell).

Imagine the scenario where App_A --> App_B

        Scenario 1:

           App_A
             |
             v
           App_B

Let's say App_A becomes multiple jobs, or subtasks, App_A_i. And App_B also becomes multiple jobs, App_Bi. Scenario 1 may transform into one of the following:

Scenario1, Situation I
 becomes     App_A1  App_A2  App_A3  App_An
 ------->      |          |      |         |
               +----------+------+---------+
               |          |      |         |
               v          v      v         v
             App_B1  App_B2  App_B3  App_Bn
Scenario1, Situation II
             App_A1  App_A2  App_A3  App_An
 or becomes    |          |      |         |
 ------->      |          |      |         |
               v          v      v         v
            App_B1  App_B2  App_B3  App_Bn

In Situation 1, each job, App_Bi, depends on completion of all of App_A's jobs before it can run. For instance, App_B1 cannot run until all App_A jobs (1 to n) have completed. From Stolos's point of view, this is not different than the simple case where App_A(1 to n) --> App_Bi. In this case, we create a dependency graph for each App_Bi. See below:

Scenario1, Situation I (view 2)
 becomes     App_A1  App_A2  App_A3  App_An
 ------->      |          |      |         |
               +----------+------+---------+
                             |
                             v
                           App_Bi

In Situation 2, each job, App_Bi, depends only on completion of its related job in App_A, or App_Ai. For instance, App_B1 depends on completion of App_A1, but it doesn't have any dependency on App_A2's completion. In this case, we create n dependency graphs, as shown in Scenario 1, Situation II.

As we have just seen, dependencies can be modeled as directed acyclic multi-graphs. (acyclic means no cycles - ie no loops. multi-graph contains many separate graphs). Situation 2 is the default in Stolos (App_Bi depends only on App_Ai).

Concept: Job IDs

For details on how to use and configure job_ids, see the section, Job ID Configuration This section explains what job_ids are.

Stolos recognizes apps (ie App_ or App_B) and jobs (App_A1, App_A2, ...). An application, or app, represents a group of jobs. A job_id identifies jobs, and it is made up of "identifiers" that we mash together via a job_id template. A job_id identifies all possible variations of some application that Stolos is aware of. To give some context for how job_id templates characterize apps, see below:

           App_A    "{date}_{client_id}_{dataset}"
             |
             v
           App_B    "{date}_{your_custom_identifier}"

Some example job_ids of App_A and App_B, respectively, might be:

App_A:  "20140614_client1_dataset1"  <--->  "{date}_{client_id}_{dataset}"
App_B:  "20140601_analysis1"  <--->  "{date}_{your_custom_identifier}"

A job_id represents the smallest piece of work that Stolos can recognize, and good choices in job_id structure identify how work is changing from app to app. For instance, assume the second job_id above, 20140601_analysis1, depends on all job_ids from 20140601 that matched a specific subset of clients and datasets. We chose to identify this subset of clients and datasets with the name analysis1. But our job_id template also includes a date because we wish to run analysis1 on different days. Note how the choice of job_id clarifies what the first and second apps have in common.

Here's some general advice for choosing a job_id template:

  • What results does this app generate? The words that differentiate those results are great candidates for identifers in a job_id.
  • What parameters does this app expect? The command-line arguments to a piece of code can be great job_id identiers.
  • How many different variations of this app exist?
  • How do I expect to use this app in my system?
  • How complex is my data pipeline? Do I have any branches in my dependency tree? If you have a very simple pipeline, you may simply wish to have all job_id templates be the same across apps.

It is important to note that the way(s) in which App_B depends on App_A have not been explained in this section. A job_id does not explain how apps depend on each other, but rather, it characterizes how we choose to identify a app's jobs in context of the parent and child apps.

Concept: Bubble Up and Bubble Down

"Bubble Up" and "Bubble Down" refer to the direction in which work and app state move through the dependency graph.

Recall Scenario 1, which defines two apps. App_B depends on App_A. The following picture is a dependency tree:

       Scenario 1:

          App_A
            |
            v
          App_B

"Bubble Down"

By analogy, the "Bubble Down" approach is like "pushing" work through a pipe.

Assume that App_A and App_B each had their own job_id queue. A job_id, job_id_123 is submitted to App_A's queue, some worker fetches that job, completes required work, and then marks the (App_A, job_id_123) pair as completed.

The "Bubble Down" process happens when, just before (App_A, job_id_123) is marked complete, we queue (App_B, f(job_id_123)) where f() is a magic function that translates App_A's job_id to the equivalent job_id for App_B.

In other words, the completion of App_A work triggers the completion of App_B work. A more semantically correct version is the following: the completion of (App_A, job_id_123) depends on both the successful execution of App_A code and then successfully queuing some App_B work.

"Bubble Up"

The "Bubble Up" approach is the concept of "pulling" work through a pipe.

In contrast to "Bubble Down", where we executed App_A first, "Bubble Up" executes App_B first. "Bubble Up" is a process of starting at some child (or descendant job), queuing the furthest uncompleted and unqueued ancestor, and removing the child from the queue. When ancestors complete, they will queue their children via "Bubble Down" and re-queue the original child job.

For instance, we can attempt to execute (App_B, job_id_B) first. When (App_B, job_id_B) runs, it checks to see if its parent, (App_A, g(job_id_B)) has completed. Since (App_A, g(job_id_B)) has not completed, it queues this job and then removes job_id_B from the App_B queue. Finally, App_A executes and via "Bubble Down", App_B also completes.

Magic functions f() and g()

Note that g(), mentioned in the "Bubble Up" subsection, is the inverse of f(), mentioned in the "Bubble Down" subsection. If f() is a magic function that translates App_A's job_id to App_B's job_id, then g() is a similar magic function that transforms a App_B job_id to an equivalent one for App_A. In reality, g() and f() receive one job_id as input and return at least one job_id as output.

These two functions can be quite complex:

  • If the parent and child app have the same job_id template, then f() == g(). In other words, f() and g() return the same job_id.
  • If they have different templates, the functions will attempt to use the metadata available from configuration metadata (ie in TASKS_JSON)
  • If a parent has many children, f(parent_job_id) returns a job_id for each child and g(child_id) returns at least 1 job_id for that parent app. This may involve calculating the crossproduct of job_id identifier metadata listed in dependency configuration for that app.
    • If a child has many parents, g and f perform similar operations.

Why perform a "Bubble Up" operation at all?

In a purely "Bubble Down" system, executing App_B first means we would have to wait indefinitely until App_A successfully completed and submitted a job_id to the queue. This can pose many problems: we don't know if App_A will ever run, so we sit and wait; waiting processes take up resources and become non-deterministic (we have no idea if the process will hang indefinitely); we can create locking scenarios where there aren't enough resources to execute App_A; App_B's queue size can become excessively high; we suddenly need a queue prioritization scheme and other complex algorithms to manage scaling and resource contention.

Secondly, if the system supports a "Bubble Up" approach, we can simply pick and run any app in a dependency graph and expect that it will be queued to execute as soon as possible to do so.

If Stolos is used properly, "Bubble up" will never queue particular jobs that would otherwise be ignored.

Concept: Job State

There are 4 recognized job states. A job_id should be in any one of these states at any given time.

  • completed -- When a job has successfully completed the work defined by a job_id, and children have been queued, the job_id is marked as completed.
  • pending -- A job_id is pending when it is queued for work or otherwise waiting to be queued on completion of a parent job.
  • failed -- Failed job_ids have failed more than the maximum allowed number of times. Children of failed jobs will never be executed.
  • skipped -- A job_id is skipped if it does not pass valid_if_or criteria defined for that app. A skipped job is treated like a "failed" job.

Setup:

The first thing you'll want to do is install Stolos

pip install stolos

# If you prefer a portable Python egg, clone the repo and then type:
# python setup.py bdist_egg

Next, define environment vars that tell Stolos how to run. For more options, see a detailed environment configuration.

export JOB_ID_DEFAULT_TEMPLATE="{date}_{client_id}_{collection_name}"
export JOB_ID_VALIDATIONS="my_python_codebase.job_id_validations"

# and assuming you use the default json configuration backend:
export TASKS_JSON="/path/to/a/file/called/tasks.json"

# and assuming you use the default queue backend:
export ZOOKEEPER_HOSTS="localhost:2181"

Next, create a job_id_validations python module that should look like this:

Last, tell Stolos how your applications depend on each other. In the environment vars defined above, we assume you're using the default backend, a json file. You may also change that if you wish. See the links below:

Use Stolos to run my applications

Setup: Configuration Backends

The configuration backend identifies where you store the dependency graph. By default, and in all examples, Stolos expects to use a a simple json file to store the dependency graph. However, you can choose to store this data in other formats or databases. The choice of configuration backend defines how you store configuration. Also, keep in mind that every time a Stolos app initializes, it queries the configuration.

Currently, the only supported configuration backends are a JSON file or a Redis database. However, it is also simple to extend Stolos with your own configuration backend. If you do implement your own configuration backend, please consider submitting a pull request to us!

These are the steps you need to take to use a non-default backend:

  1. First, let Stolos know which backend to load. (You could also specify your own configuration backend, if you are so inclined).
export CONFIGURATION_BACKEND="stolos.configuration_backend.json_config.JSONConfig"

OR

export CONFIGURATION_BACKEND="stolos.configuration_backend.redis_config.RedisConfig"
  1. Second, each backend has its own options.
    • For the JSON backend, you must define:

      export TASKS_JSON="$DIR/stolos/examples/tasks.json"

    • For the Redis backend, it is optional to overide these defaults:

      export SCHEDULER_REDIS_DB=0 # which redis db is Stolos using? export SCHEDULER_REDIS_PORT=6379 export SCHEDULER_REDIS_HOST='localhost'

For examples, see the file, conf/stolos-env.sh

Usage: Quick Start

Great! You've installed and configured Stolos. Let's run an application.

  1. Create some application that can be called through bash or initiated as a spark job. Let's use echo 123 because it is a good test example.
  2. Create an entry for it in the app config (ie the file pointed to by TASKS_JSON if you use that)
cat > $TASKS_JSON <<EOF
{
    "myapp": {
        "job_type": "bash",
        "job_id": "{num}",
        "bash_opts": "echo 123"
    }
}
EOF
  1. Submit a job_id for this app
stolos-submit -a myapp --job_id 123
  1. Run the app using Stolos (see below)
stolos -a myapp

Take a look at some examples for examples

Usage:

Stolos wraps your application code so it can track job state just before and just after the application runs. Therefore, you should think of running an application via Stolos like running the application itself. This is fundamentally different than many projects because there is no centralized server or "master" node from you can launch tasks or control Stolos. Stolos is simply a thin wrapper for your application. It is ignorant of your infrastructure and network topology. You can generally execute Stolos applications the same way you would treat your application without Stolos.

In order to run a job, you have to queue it and then execute it. You can get a job from the application's queue and execute code via:

stolos --app_name test_scheduler/test_pyspark -h

stolos --app_name test_scheduler/test_bash -h

This is how you can manually queue a job:

stolos-submit -h

We also provide a way to bypass Stolos and execute a job directly. This is useful if you are testing an app that may be dependent on Stolos plugins, such as the pyspark plugin.

stolos --bypass_scheduler -a my_app --job_id my_job_id

Configuration: Job IDs

This section explains what configuration for job_ids must exist.

These environment variables must be available to Stolos:

export JOB_ID_DEFAULT_TEMPLATE="{date}_{client_id}_{collection_name}"
export JOB_ID_VALIDATIONS="my_python_codebase.job_id_validations"
  • JOB_ID_VALIDATIONS points to a python module containing code to verify that the identifiers in a job_id are correct.
    • See stolos/examples/job_id_validations.py for the expected code structure
    • These validations specify exactly which identifiers can be used in job_id templates and what format they take (ie is date a datetime instance, an int or string?).
    • They are optional to implement, but you will see several warning messages for each unvalidated job_id identifier.
  • JOB_ID_DEFAULT_TEMPLATE - defines the default job_id for an app if the job_id template isn't explicitly defined in the app's config. You should have job_id validation code for each identifier in your default template.

In addition to these defaults, each app in the app configuration may also contain a custom job_id template. See section: Configuration: Apps, Dependencies and Configuration for details.

Configuration: Apps, Dependencies and Configuration

App configuration defines the app dependency graph and metadata Stolos needs to run a job. App configuration answers questions like: "What are the parents or children for this (app_name, job_id) pair?" and "What general key:value configuration is defined for this app?". It does not store the state of job_ids and it does not contain queuing logic. This section will show available configuration options.

Configuration can be defined using various different configuration backends: a json file, a key-value database, etc. For instructions on how to setup a different or custom configuration backends, see section "Setup: Configuration Backends." The purpose of this section, however, is to expose how to define the apps and their relationships with other apps.

There are a few different configuration options each app may define. Here is a list of configuration options:

  • job_type - (required) Select which plugin this particular app uses to execute your code. The job_type choice also adds other configuration options based on how the respective Stolos plugin works.
  • depends_on - (optional) A designation that a (app_name, job_id) can only be queued to run if certain parent job_ids have completed.
  • job_id - (optional) A template describing what identifiers compose the job_ids for your app. If not given, assumes the default job_id template. job_id templates determine how work changes through your pipeline
  • valid_if_or - (optional) Criteria that job_ids are matched against. If a job_id for an app does not match the given valid_if_or criteria, then the job is immediately marked as "skipped"

Here is a minimum viable configuration for an app:

{
    "app_name": {
        "job_type": "bash"
    }
}

As you can see, there's not much to it. You would need to define a command-line like "--bash echo 123" for this example to run properly.

Here is an example of a simple App_Ai-->App_Birelationship. Also notice that thebash_opts` performs string interpolation so applications can receive dynamically determined command-line parameters.

{
    "App1": {
        "job_type": "bash",
        "bash_opts": "echo {app_name} is Running App 1 with {job_id}"
    },
    "App2": {
        "job_type": "bash",
        "bash_opts": "echo Running App 2. job_id contains date={date}"
        "depends_on": {"app_name": ["App1"]}
    }
}

A slightly more complex variant of a App_Ai --> App_Bi relationship. Notice that the job_id of the child app has changed, meaning a preprocess job identified by {date}_{client_id} would kick off a modelBuild job identified by {date}_{client_id}_purchaseRevenue

{
    "preprocess": {
        "job_type": "bash",
        "job_id": "{date}_{client_id}"
    },
    "modelBuild": {
        "job_type": "bash",
        "job_id": "{date}_{client_id}_{target}"
        "depends_on": {
            "app_name": ["preprocess"],
            "target": ["purchaseRevenue"]
        }
    }
}

A dependency graph demonstrating how App_A queues up multiple App_Bi. In this example, the completion of a preprocess job identified by 20140101_1234 enqueues two modelBuild jobs: 20140101_1234_purchaseRevenue and 20140101_1234_numberOfPageviews

{
    "preprocess": {
        "job_type": "bash",
        "job_id": "{date}_{client_id}"
    },
    "modelBuild"": {
        "job_type": "bash",
        "job_id": "{date}_{client_id}_{target}"
        "depends_on": {
            "app_name": ["preprocess"],
            "target": ["purchaseRevenue", "numberOfPageviews"]
        }
    }
}

The below configuration demonstrates how multiple App_Ai reduce to App_Bj. In other words, the modelBuild of client1_purchaseRevenue cannot run (or be queued to run) until preprocess has completed these job_ids: 20140601_client1, 20140501_client1, and 20140401_client1. The same applies to job, client1_numberOfPageviews. However, it does not matter whether client1_numberOfPageviews or client1_purchaseRevenue runs first. Also, notice that these dates are hardcoded. If you would like to create dates that aren't hardcoded, you should refer to the section, Configuration: Defining Dependencies with Two-Way Functions.

{
    "preprocess": {
        "job_type": "bash",
        "job_id": "{date}_{client_id}"
    },
    "modelBuild": {
        "job_type": "bash",
        "job_id": "{client_id}_{target}"
        "depends_on": {
            "app_name": ["preprocess"],
            "target": ["purchaseRevenue", "numberOfPageviews"],
            "date": [20140601, 20140501, 20140401]
        }
    }
}

We also enable boolean logic in dependency structures. An app can depend on dependency_group_1 OR another dependency group. Within a dependency group, you can also specify that the dependencies come from one different set of job_ids AND another set. The AND and OR logic can also be combined in one example, and this can result in surprisingly complex relationships. In this example, there are several things happening. Firstly, note that in order for any of modelBuild's jobs to be queued to run, either the dependencies in dependency_group_1 OR those in dependency_group_2 must be met. Looking more closely at dependency_group_1, we can see that it defines a list of key-value objects ANDed together using a list. dependency_group_1 will not be satisfied unless all of the following is true: the three listed dates for preprocess have completed AND the two dates for otherPreprocess have completed. In summary, the value of dependency_group_1 is a list. The use of a list specifies AND logic, while the declaration of different dependency groups specifies OR logic.

{
    "preprocess": {
        "job_type": "bash",
        "job_id": "{date}_{client_id}"
    },
    "modelBuild": {
        "job_id": "{client_id}_{target}"
        "depends_on": {
            "dependency_group_1": [
                {"app_name": ["preprocess"],
                 "target": ["purchaseRevenue", "purchaseQuantity"],
                 "date": [20140601, 20140501, 20140401]
                },
                {"app_name": ["otherPreprocess"],
                 "target": ["purchaseRevenue", "purchaseQuantity"],
                 "date": [20120101, 20130101]
                }
              ],
            "dependency_group_2": {
                "app_name": ["preprocess"],
                "target": ["numberOfPageviews"],
                "date": [20140615]
            }
        }

There are many structures that depends_on can take, and some are better than others. We've given you enough building blocks to express almost any deterministic batch processing pipeline.

Configuration: Defining Dependencies with a Two-Way Functions

TODO This isn't implemented yet.

Two way functions allow users of Stolos to define arbitrarily complex dependency relationships between jobs. The general idea of a two-way function is to define how the job, App_Ai, can spawn one or more children, App_Bj. Being "two-way", this function must be able to identify child and parent jobs.

depends_on: {_func: "python.import.path.to.package.module.func", app_name: ...}

Configuration: Job Types

The job_type specifier in the config defines how your application code should run. For example, should your code be treated as a bash job (and executed in its own shell), or should it be an Apache Spark (python) job that receives elements of a stream or a textFile instance? The following table defines different job_type options available. Each job_type has its own set of configuration options, and these are available at the commandline and (possibly) in the app configuration.

For most use-cases, we recommend "bash" job type. However, if a plugin seems particularly useful, remember that running the application without Stolos may require some extra code on your part.

  • job_type="bash"
    • bash_opts
  • job_type="pyspark"
    • pymodule - a python import path to python application code. ie. stolos.examples.tasks.test_task,
    • spark_conf - a dict of Spark config keys and values
    • env - a dict of environment variables and values
    • env_from_os - a list if os environment variables that should exist on the Spark driver
    • uris - a list of Spark files and pyFiles

(Developer note) Different job_types correspond to specific "plugins" recognized by Stolos. One can extend Stolos to support custom job_types. You may wish to do this if you determine that it is more convenient have similar apps re-use the same start-up and tear-down logic. Keep in mind that plugins generally violate Stolos's rule that it is ignorant of your runtime environment, network topology, infrastructure, etc. Therefore, in Stolos, a plugin should be completely isolated from the rest of the Stolos codebase. Refer to the developer documentation for writing custom plugins.

Developer's Guide

Submitting a Pull Request

We love that you're interested in contributing to this project! Hopefully, this section will help you make a successful pull request to the project.

If you'd like to make a change, you should:

  1. Create an issue and form a plan with maintainers on the issue tracker
  2. Fork this repo, clone it to you machine, make changes in your fork, and then submit a Pull Request. Google "How to submit a pull request" or follow this guide.
  • Before submitting the PR, run tests to verify your code is clean:

    ./bin/test_stolos.sh # run the tests

  1. Get code reviewed and iterate until PR is closed

Creating a plugin

Plugins hook arbitrary code into Stolos. By default, Stolos supports executing bash applications and, for convenience, Spark (python) applications. If you wish to add another plugin, you should create a file in the stolos/plugins directory named "xyz_plugin.py."

./stolos/plugins/xyz_plugin.py

This plugin file must define exactly two things:

  • It must define a main(ns) function. ns is an argparse.Namespace instance. This function should use the values defined by variables ns.app_name and ns.job_id (and whatever other ns variables) to execute some specific piece of code that exists somewhere.

  • It must define a build_arg_parser object that will populate the ns. Keep in mind that Stolos will also populate this ns and it is generally good practice to avoid naming conflicts in argument options. The build_arg_parser object uses the argparse_tools library, and is instantiated like this:

    build_arg_parser = runner.build_plugin_arg_parser([...])

Roadmap:

Here are some improvements we are considering in the future:

  • Support additional configuration backends
    • Some of these backends may support a web UI for creating, viewing and managing app config and dependencies
    • We currently support storing configuration in json file xor in Redis.
  • Support different queue backends in addition to Zookeeper
    • (Stolos should use backends through a shared api of some sort)
  • A web UI showing various things like:
    • Interactive dependency graph
    • Current job status

About

A Directed Acyclic Graph task dependency scheduler designed to simplify complex distributed pipelines

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •