forked from cjlin1/libsvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svm.h
104 lines (84 loc) · 3.3 KB
/
svm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#ifndef _LIBSVM_H
#define _LIBSVM_H
#define LIBSVM_VERSION 314
#ifdef __cplusplus
extern "C" {
#endif
extern int libsvm_version;
struct svm_node
{
int index;
double value;
};
struct svm_problem
{
int l;
double *y;
struct svm_node **x;
};
enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */
enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
struct svm_parameter
{
int svm_type;
int kernel_type;
int degree; /* for poly */
double gamma; /* for poly/rbf/sigmoid */
double coef0; /* for poly/sigmoid */
/* these are for training only */
double cache_size; /* in MB */
double eps; /* stopping criteria */
double C; /* for C_SVC, EPSILON_SVR and NU_SVR */
int nr_weight; /* for C_SVC */
int *weight_label; /* for C_SVC */
double* weight; /* for C_SVC */
double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */
double p; /* for EPSILON_SVR */
int shrinking; /* use the shrinking heuristics */
int probability; /* do probability estimates */
};
//
// svm_model
//
struct svm_model
{
struct svm_parameter param; /* parameter */
int nr_class; /* number of classes, = 2 in regression/one class svm */
int l; /* total #SV */
struct svm_node **SV; /* SVs (SV[l]) */
double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
double *rho; /* constants in decision functions (rho[k*(k-1)/2]) */
double *probA; /* pariwise probability information */
double *probB;
int *sv_indices; /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */
/* for classification only */
int *label; /* label of each class (label[k]) */
int *nSV; /* number of SVs for each class (nSV[k]) */
/* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
/* XXX */
int free_sv; /* 1 if svm_model is created by svm_load_model*/
/* 0 if svm_model is created by svm_train */
};
struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
int svm_save_model(const char *model_file_name, const struct svm_model *model);
struct svm_model *svm_load_model(const char *model_file_name);
int svm_get_svm_type(const struct svm_model *model);
int svm_get_nr_class(const struct svm_model *model);
void svm_get_labels(const struct svm_model *model, int *label);
void svm_get_sv_indices(const struct svm_model *model, int *sv_indices);
int svm_get_nr_sv(const struct svm_model *model);
double svm_get_svr_probability(const struct svm_model *model);
double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
double svm_predict(const struct svm_model *model, const struct svm_node *x);
double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
void svm_free_model_content(struct svm_model *model_ptr);
void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
void svm_destroy_param(struct svm_parameter *param);
const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
int svm_check_probability_model(const struct svm_model *model);
void svm_set_print_string_function(void (*print_func)(const char *));
#ifdef __cplusplus
}
#endif
#endif /* _LIBSVM_H */