forked from LadybirdBrowser/ladybird
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArray.h
185 lines (149 loc) · 5.1 KB
/
Array.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Iterator.h>
#include <AK/Optional.h>
#include <AK/Span.h>
#include <AK/StdLibExtras.h>
#include <AK/TypedTransfer.h>
namespace AK {
namespace Detail {
// This type serves as the storage of 0-sized `AK::Array`s. While zero-length `T[0]`
// is accepted as a GNU extension, it causes problems with UBSan in Clang 16.
template<typename T>
struct EmptyArrayStorage {
T& operator[](size_t) const { VERIFY_NOT_REACHED(); }
constexpr operator T*() const { return nullptr; }
};
}
template<typename T, size_t Size>
struct Array {
using ValueType = T;
// This is a static function because constructors mess up Array's POD-ness.
static Array from_span(ReadonlySpan<T> span)
{
Array array;
VERIFY(span.size() == Size);
TypedTransfer<T>::copy(array.data(), span.data(), Size);
return array;
}
static constexpr Array from_repeated_value(T const& value)
{
Array array;
array.fill(value);
return array;
}
[[nodiscard]] constexpr T const* data() const { return __data; }
[[nodiscard]] constexpr T* data() { return __data; }
[[nodiscard]] constexpr size_t size() const { return Size; }
[[nodiscard]] constexpr ReadonlySpan<T> span() const { return { __data, Size }; }
[[nodiscard]] constexpr Span<T> span() { return { __data, Size }; }
[[nodiscard]] constexpr T const& at(size_t index) const
{
VERIFY(index < size());
return __data[index];
}
[[nodiscard]] constexpr T& at(size_t index)
{
VERIFY(index < size());
return __data[index];
}
[[nodiscard]] constexpr T const& first() const { return at(0); }
[[nodiscard]] constexpr T& first() { return at(0); }
[[nodiscard]] constexpr T const& last() const
requires(Size > 0)
{
return at(Size - 1);
}
[[nodiscard]] constexpr T& last()
requires(Size > 0)
{
return at(Size - 1);
}
[[nodiscard]] constexpr bool is_empty() const { return size() == 0; }
[[nodiscard]] constexpr T const& operator[](size_t index) const { return at(index); }
[[nodiscard]] constexpr T& operator[](size_t index) { return at(index); }
template<typename T2, size_t Size2>
[[nodiscard]] constexpr bool operator==(Array<T2, Size2> const& other) const { return span() == other.span(); }
using ConstIterator = SimpleIterator<Array const, T const>;
using Iterator = SimpleIterator<Array, T>;
[[nodiscard]] constexpr ConstIterator begin() const { return ConstIterator::begin(*this); }
[[nodiscard]] constexpr Iterator begin() { return Iterator::begin(*this); }
[[nodiscard]] constexpr ConstIterator end() const { return ConstIterator::end(*this); }
[[nodiscard]] constexpr Iterator end() { return Iterator::end(*this); }
[[nodiscard]] constexpr operator ReadonlySpan<T>() const { return span(); }
[[nodiscard]] constexpr operator Span<T>() { return span(); }
constexpr size_t fill(T const& value)
{
for (size_t idx = 0; idx < Size; ++idx)
__data[idx] = value;
return Size;
}
[[nodiscard]] constexpr T max() const
requires(requires(T x, T y) { x < y; })
{
static_assert(Size > 0, "No values to max() over");
T value = __data[0];
for (size_t i = 1; i < Size; ++i)
value = AK::max(__data[i], value);
return value;
}
[[nodiscard]] constexpr T min() const
requires(requires(T x, T y) { x > y; })
{
static_assert(Size > 0, "No values to min() over");
T value = __data[0];
for (size_t i = 1; i < Size; ++i)
value = AK::min(__data[i], value);
return value;
}
bool contains_slow(T const& value) const
{
return first_index_of(value).has_value();
}
Optional<size_t> first_index_of(T const& value) const
{
for (size_t i = 0; i < Size; ++i) {
if (__data[i] == value)
return i;
}
return {};
}
Conditional<Size == 0, Detail::EmptyArrayStorage<T>, T[Size]> __data;
};
template<typename T, typename... Types>
Array(T, Types...) -> Array<T, sizeof...(Types) + 1>;
namespace Detail {
template<typename T, size_t... Is>
constexpr auto integer_sequence_generate_array([[maybe_unused]] T const offset, IntegerSequence<T, Is...>) -> Array<T, sizeof...(Is)>
{
return { { (offset + Is)... } };
}
}
template<typename T, T N>
constexpr auto iota_array(T const offset = {})
{
static_assert(N >= T {}, "Negative sizes not allowed in iota_array()");
return Detail::integer_sequence_generate_array<T>(offset, MakeIntegerSequence<T, N>());
}
namespace Detail {
template<typename T, size_t N, size_t... Is>
constexpr auto to_array_impl(T (&&a)[N], IndexSequence<Is...>) -> Array<T, sizeof...(Is)>
{
return { { a[Is]... } };
}
}
template<typename T, size_t N>
constexpr auto to_array(T (&&a)[N])
{
return Detail::to_array_impl(move(a), MakeIndexSequence<N>());
}
}
#if USING_AK_GLOBALLY
using AK::Array;
using AK::iota_array;
using AK::to_array;
#endif