forked from namisan/mt-dnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperturbation.py
executable file
·152 lines (144 loc) · 4.71 KB
/
perturbation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Microsoft. All rights reserved.
from copy import deepcopy
import torch
import logging
import random
from torch.nn import Parameter
from functools import wraps
import torch.nn.functional as F
from data_utils.task_def import TaskType
from data_utils.task_def import EncoderModelType
from .loss import stable_kl
logger = logging.getLogger(__name__)
def generate_noise(embed, mask, epsilon=1e-5):
noise = embed.data.new(embed.size()).normal_(0, 1) * epsilon
noise.detach()
noise.requires_grad_()
return noise
class SmartPerturbation:
def __init__(
self,
epsilon=1e-6,
multi_gpu_on=False,
step_size=1e-3,
noise_var=1e-5,
norm_p="inf",
k=1,
fp16=False,
encoder_type=EncoderModelType.BERT,
loss_map=[],
norm_level=0,
):
super(SmartPerturbation, self).__init__()
self.epsilon = epsilon
# eta
self.step_size = step_size
self.multi_gpu_on = multi_gpu_on
self.fp16 = fp16
self.K = k
# sigma
self.noise_var = noise_var
self.norm_p = norm_p
self.encoder_type = encoder_type
self.loss_map = loss_map
self.norm_level = norm_level > 0
assert len(loss_map) > 0
def _norm_grad(self, grad, eff_grad=None, sentence_level=False):
if self.norm_p == "l2":
if sentence_level:
direction = grad / (
torch.norm(grad, dim=(-2, -1), keepdim=True) + self.epsilon
)
else:
direction = grad / (
torch.norm(grad, dim=-1, keepdim=True) + self.epsilon
)
elif self.norm_p == "l1":
direction = grad.sign()
else:
if sentence_level:
direction = grad / (
grad.abs().max((-2, -1), keepdim=True)[0] + self.epsilon
)
else:
direction = grad / (grad.abs().max(-1, keepdim=True)[0] + self.epsilon)
eff_direction = eff_grad / (
grad.abs().max(-1, keepdim=True)[0] + self.epsilon
)
return direction, eff_direction
def forward(
self,
model,
logits,
input_ids,
token_type_ids,
attention_mask,
premise_mask=None,
hyp_mask=None,
task_id=0,
task_type=TaskType.Classification,
pairwise=1,
):
# adv training
assert task_type in set(
[TaskType.Classification, TaskType.Ranking, TaskType.Regression]
), "Donot support {} yet".format(task_type)
vat_args = [
input_ids,
token_type_ids,
attention_mask,
premise_mask,
hyp_mask,
task_id,
1,
]
# init delta
embed = model(*vat_args)
noise = generate_noise(embed, attention_mask, epsilon=self.noise_var)
for step in range(0, self.K):
vat_args = [
input_ids,
token_type_ids,
attention_mask,
premise_mask,
hyp_mask,
task_id,
2,
embed + noise,
]
adv_logits = model(*vat_args)
if task_type == TaskType.Regression:
adv_loss = F.mse_loss(adv_logits, logits.detach(), reduction="sum")
else:
if task_type == TaskType.Ranking:
adv_logits = adv_logits.view(-1, pairwise)
adv_loss = stable_kl(adv_logits, logits.detach(), reduce=False)
(delta_grad,) = torch.autograd.grad(
adv_loss, noise, only_inputs=True, retain_graph=False
)
norm = delta_grad.norm()
if torch.isnan(norm) or torch.isinf(norm):
return 0
eff_delta_grad = delta_grad * self.step_size
delta_grad = noise + delta_grad * self.step_size
noise, eff_noise = self._norm_grad(
delta_grad, eff_grad=eff_delta_grad, sentence_level=self.norm_level
)
noise = noise.detach()
noise.requires_grad_()
vat_args = [
input_ids,
token_type_ids,
attention_mask,
premise_mask,
hyp_mask,
task_id,
2,
embed + noise,
]
adv_logits = model(*vat_args)
if task_type == TaskType.Ranking:
adv_logits = adv_logits.view(-1, pairwise)
adv_lc = self.loss_map[task_id]
adv_loss = adv_lc(logits, adv_logits, ignore_index=-1)
return adv_loss, embed.detach().abs().mean(), eff_noise.detach().abs().mean()