forked from vladmandic/human
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathemotion.ts
87 lines (83 loc) · 3.77 KB
/
emotion.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/**
* Emotion model implementation
*
* [**Oarriaga**](https://github.com/oarriaga/face_classification)
*/
import * as tf from 'dist/tfjs.esm.js';
import type { Emotion } from '../result';
import { log, now } from '../util/util';
import type { Config } from '../config';
import type { GraphModel, Tensor, Tensor4D } from '../tfjs/types';
import { loadModel } from '../tfjs/load';
import { env } from '../util/env';
import { constants } from '../tfjs/constants';
let annotations: string[] = [];
let model: GraphModel | null;
const last: { score: number, emotion: Emotion }[][] = [];
let lastCount = 0;
let lastTime = 0;
let skipped = Number.MAX_SAFE_INTEGER;
let rgb = false;
export async function load(config: Config): Promise<GraphModel> {
if (env.initial) model = null;
if (!model) {
model = await loadModel(config.face.emotion?.modelPath);
rgb = model?.inputs?.[0].shape?.[3] === 3;
if (!rgb) annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']; // oarriaga and gear
else annotations = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']; // affectnet
} else if (config.debug) {
log('cached model:', model['modelUrl']);
}
return model;
}
export async function predict(image: Tensor4D, config: Config, idx: number, count: number): Promise<{ score: number, emotion: Emotion }[]> {
if (!model) return [];
const skipFrame = skipped < (config.face.emotion?.skipFrames || 0);
const skipTime = (config.face.emotion?.skipTime || 0) > (now() - lastTime);
if (config.skipAllowed && skipTime && skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {
skipped++;
return last[idx];
}
skipped = 0;
return new Promise(async (resolve) => {
const obj: { score: number, emotion: Emotion }[] = [];
if (config.face.emotion?.enabled) {
const t: Record<string, Tensor> = {};
const inputSize = model?.inputs[0].shape ? model.inputs[0].shape[2] : 0;
if (config.face.emotion?.['crop'] > 0) { // optional crop
const crop = config.face.emotion?.['crop'];
const box = [[crop, crop, 1 - crop, 1 - crop]];
t.resize = tf.image.cropAndResize(image, box, [0], [inputSize, inputSize]);
} else {
t.resize = tf.image.resizeBilinear(image, [inputSize, inputSize], false);
}
if (rgb) {
t.mul = tf.mul(t.resize, 255);
t.normalize = tf.sub(t.mul, [103.939, 116.779, 123.68]); // affectnet uses specific norm values
t.emotion = model?.execute(t.normalize) as Tensor; // result is already in range 0..1, no need for additional activation
} else {
// [t.red, t.green, t.blue] = tf.split(t.resize, 3, 3);
// weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
// t.redNorm = tf.mul(t.red, rgb[0]);
// t.greenNorm = tf.mul(t.green, rgb[1]);
// t.blueNorm = tf.mul(t.blue, rgb[2]);
// t.grayscale = tf.addN([t.redNorm, t.greenNorm, t.blueNorm]);
t.channels = tf.mul(t.resize, constants.rgb);
t.grayscale = tf.sum(t.channels, 3, true);
t.grayscaleSub = tf.sub(t.grayscale, constants.tf05);
t.grayscaleMul = tf.mul(t.grayscaleSub, constants.tf2);
t.emotion = model?.execute(t.grayscaleMul) as Tensor; // result is already in range 0..1, no need for additional activation
}
lastTime = now();
const data = await t.emotion.data();
for (let i = 0; i < data.length; i++) {
if (data[i] > (config.face.emotion.minConfidence || 0)) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] as Emotion });
}
obj.sort((a, b) => b.score - a.score);
Object.keys(t).forEach((tensor) => tf.dispose(t[tensor]));
}
last[idx] = obj;
lastCount = count;
resolve(obj);
});
}