forked from SeungyounShin/Llama2-Code-Interpreter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chatbot.py
238 lines (190 loc) · 7.15 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import gradio as gr
import random
import time, os
import copy
import re
import torch
from rich.console import Console
from rich.table import Table
from datetime import datetime
from threading import Thread
from typing import Optional
from transformers import TextIteratorStreamer
from utils.special_tok_llama2 import (
B_CODE,
E_CODE,
B_RESULT,
E_RESULT,
B_INST,
E_INST,
B_SYS,
E_SYS,
DEFAULT_PAD_TOKEN,
DEFAULT_BOS_TOKEN,
DEFAULT_EOS_TOKEN,
DEFAULT_UNK_TOKEN,
IGNORE_INDEX,
)
from finetuning.conversation_template import (
json_to_code_result_tok_temp,
msg_to_code_result_tok_temp,
)
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="transformers")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from code_interpreter.LlamaCodeInterpreter import LlamaCodeInterpreter
class StreamingLlamaCodeInterpreter(LlamaCodeInterpreter):
streamer: Optional[TextIteratorStreamer] = None
# overwirte generate function
@torch.inference_mode()
def generate(
self,
prompt: str = "[INST]\n###User : hi\n###Assistant :",
max_new_tokens=512,
do_sample: bool = True,
use_cache: bool = True,
top_p: float = 0.95,
temperature: float = 0.1,
top_k: int = 50,
repetition_penalty: float = 1.0,
) -> str:
# Get the model and tokenizer, and tokenize the user text.
self.streamer = TextIteratorStreamer(
self.tokenizer, skip_prompt=True, Timeout=5
)
input_prompt = copy.deepcopy(prompt)
inputs = self.tokenizer([prompt], return_tensors="pt")
input_tokens_shape = inputs["input_ids"].shape[-1]
eos_token_id = self.tokenizer.convert_tokens_to_ids(DEFAULT_EOS_TOKEN)
e_code_token_id = self.tokenizer.convert_tokens_to_ids(E_CODE)
kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=top_p,
temperature=temperature,
use_cache=use_cache,
top_k=top_k,
repetition_penalty=repetition_penalty,
eos_token_id=[
eos_token_id,
e_code_token_id,
], # Stop generation at either EOS or E_CODE token
streamer=self.streamer,
)
thread = Thread(target=self.model.generate, kwargs=kwargs)
thread.start()
return ""
def change_markdown_image(text: str):
modified_text = re.sub(r"!\[(.*?)\]\(\'(.*?)\'\)", r"![\1](/file=\2)", text)
return modified_text
def gradio_launch(model_path: str, load_in_4bit: bool = True, MAX_TRY: int = 5):
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
chatbot = gr.Chatbot(height=820, avatar_images="./assets/logo2.png")
msg = gr.Textbox()
clear = gr.Button("Clear")
interpreter = StreamingLlamaCodeInterpreter(
model_path=model_path, load_in_4bit=load_in_4bit
)
def bot(history):
user_message = history[-1][0]
interpreter.dialog.append({"role": "user", "content": user_message})
print(f"###User : [bold]{user_message}[bold]")
# print(f"###Assistant : ")
# setup
HAS_CODE = False # For now
INST_END_TOK_FLAG = False
full_generated_text = ""
prompt = interpreter.dialog_to_prompt(dialog=interpreter.dialog)
start_prompt = copy.deepcopy(prompt)
prompt = f"{prompt} {E_INST}"
_ = interpreter.generate(prompt)
history[-1][1] = ""
generated_text = ""
for character in interpreter.streamer:
history[-1][1] += character
generated_text += character
yield history
full_generated_text += generated_text
HAS_CODE, generated_code_block = interpreter.extract_code_blocks(
generated_text
)
attempt = 1
while HAS_CODE:
if attempt > MAX_TRY:
break
# if no code then doesn't have to execute it
# refine code block for history
history[-1][1] = (
history[-1][1]
.replace(f"{B_CODE}", "\n```python\n")
.replace(f"{E_CODE}", "\n```\n")
)
history[-1][1] = change_markdown_image(history[-1][1])
yield history
# replace unknown thing to none ''
generated_code_block = generated_code_block.replace(
"<unk>_", ""
).replace("<unk>", "")
(
code_block_output,
error_flag,
) = interpreter.execute_code_and_return_output(
f"{generated_code_block}"
)
code_block_output = interpreter.clean_code_output(code_block_output)
generated_text = (
f"{generated_text}\n{B_RESULT}\n{code_block_output}\n{E_RESULT}\n"
)
full_generated_text += (
f"\n{B_RESULT}\n{code_block_output}\n{E_RESULT}\n"
)
# append code output
history[-1][1] += f"\n```RESULT\n{code_block_output}\n```\n"
history[-1][1] = change_markdown_image(history[-1][1])
yield history
prompt = f"{prompt} {generated_text}"
_ = interpreter.generate(prompt)
for character in interpreter.streamer:
history[-1][1] += character
generated_text += character
history[-1][1] = change_markdown_image(history[-1][1])
yield history
HAS_CODE, generated_code_block = interpreter.extract_code_blocks(
generated_text
)
if generated_text.endswith("</s>"):
break
attempt += 1
interpreter.dialog.append(
{
"role": "assistant",
"content": generated_text.replace("<unk>_", "")
.replace("<unk>", "")
.replace("</s>", ""),
}
)
print("----------\n" * 2)
print(interpreter.dialog)
print("----------\n" * 2)
return history[-1][1]
def user(user_message, history):
return "", history + [[user_message, None]]
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Process path for LLAMA2_FINETUNEED.")
parser.add_argument(
"--path",
type=str,
required=True,
help="Path to the finetuned LLAMA2 model.",
default="./output/llama-2-7b-codellama-ci",
)
args = parser.parse_args()
gradio_launch(model_path=args.path, load_in_4bit=True)